Exhibit H
Statewide Databases of Registered Voters:
Study Of Accuracy, Privacy, Usability, Security, and Reliability Issues commissioned by
the U.S. Public Policy Committee of the Association for Computing Machinery

February 2006
Preface

The Association for Computing Machinery (ACM) is an educational and scientific society uniting the world's computing educators, researchers, and professionals to inspire dialogue, share resources, and address the field's challenges. ACM strengthens the profession's collective voice through strong leadership, promotion of the highest standards, and recognition of technical excellence. As such, ACM cares deeply about the dependability and reliability of computing technology. Voter registration systems encompass not only the databases that house voter information, but also an entire information technology infrastructure that must be carefully managed by election officials. The U.S. Public Policy Committee of the ACM (USACM) commissioned this study to provide objective technical information and expert recommendations to state and local election officials, policy makers, and the public about these systems.

The USACM serves as the focal point for ACM's interaction with U.S. government organizations, the computing community, and the U.S. public in all matters of U.S. public policy related to information technology.

Supported by ACM's Washington, D.C., Office of Public Policy, USACM responds to requests for information and technical expertise from U.S. government agencies and departments, seeks to influence relevant U.S. government policies on behalf of the computing community and the public, and provides information to ACM on relevant U.S. government activities. USACM also identifies potentially significant technical and public policy issues and brings them to the attention of ACM and the public.

More information about ACM may be found on the World Wide Web at http://www.acm.org, and information on USACM may be found at http://www.acm.org/usacm.
Table of Contents

- Executive Summary .. 4
- Chapter Overviews and Recommendations 8
 1. Introduction .. 17
 2. Accuracy ... 21
 3. Privacy ... 27
 4. Usability ... 33
 5. Security ... 39
 6. Reliability ... 50
- Appendix A: Glossary .. 54
- Appendix B: Biographies of Committee Members 57
"An adequate and effective registration will go far toward assuring honesty and fairness in the conduct of elections. Upon the honest and faithful maintenance of the registration books depends the purity of the ballot box. And upon the purity of the ballot box depends the success or failure of our democratic form of government."

— *Registration of Voters in Louisiana*, Alden L. Powell and Emmett Assiff, Bureau of Government Research, Louisiana State University, 1951

Executive Summary

The voter registration process may seem simple to most voters. They give their names, addresses, birth dates, and in some cases party affiliations to election officials with the expectation that they will be able to vote on Election Day. In reality, election officials must oversee a complex system managing this process. They must ensure that the voters' information is accurately recorded and maintained, that the system is transparent while voter information is kept private and secure from unauthorized access, and that poll workers can access this information on Election Day to determine whether or not any given voter is eligible. A well-managed voter registration system is vital for ensuring public confidence in elections.

State and local governments have managed voter registration using different approaches among different jurisdictions. In 2002, Congress sought to make these disparate efforts more uniform by passing the Help America Vote Act, which required that each state have a computerized statewide voter registration database. In implementing this mandate, state and local governments still have differing approaches, but it is clear that information technology underpins each of their efforts. While technology will help election officials manage this complex system, it also creates new risks that must be addressed.

This study focuses on five areas that election officials should address when creating statewide voter registration databases (VRDs): accuracy, privacy, usability, security, and reliability. Each chapter contains detailed discussions and recommendations. The following are some of the overarching goals for VRDs and selected recommendations for achieving them.

1. **The policies and practices of entire voting registration systems, including those that govern VRDs, should be transparent both internally and externally.**

VRDs control access to voting; therefore, they have a direct impact on the fairness of elections, as well as the public's perception of fairness. It must be possible to convince voters, political parties, politicians, academics, the press, and others that VRDs are correct and are operating appropriately. Internal procedures and interfaces also must be clear to election workers in order to minimize errors. Transparency can be provided by allowing voters to verify their voter registration status and data; publicly disclosing outside data sources that officials use for verification; indefinitely keeping a secure write-
once VRD archive in electronic form to allow audits of previous elections, and using independent experts to audit and review VRD security policies. Other goals such as accountability, audits, and notification also support transparency and are discussed below.

2. Accountability should be apparent throughout each VRD.

It should be clear who is proposing, making, or approving changes to the data, the system, or its policies. Security policies are an important tool for ensuring accountability. For example, access control policies can be structured to restrict actions of certain groups or individual users of the system. Further, users' actions can be logged using audit trails (discussed below). Accountability also should extend to external uses of VRD data. For example, state and local officials should require recipients of data from VRDs to sign use agreements consistent with the government's official policies and procedures.

3. Audit trails should be employed throughout the VRD.

VRDs that can be independently verified, checked, and proven to be fair will increase voter confidence and help avoid litigation. Audit trails are important for independent verification, which, in turn, makes the system more transparent and provides a mechanism for accountability. They should include records of data changes, configuration changes, security policy changes, and database design changes. The trails may be independent records for each part of the VRD, but they should include both who made the change and who approved the change.

4. Privacy values should be a fundamental part of the VRD, not an afterthought.

Privacy policies for voter registration activities should be based on Fair Information Practices (FIPs), which are a set of principles for addressing concerns about information privacy. FIPs typically address collection limitation, data quality, purpose specification, use limitation, security safeguards, openness, individual participation, and accountability. There are many ways to implement good privacy policies. For example, we recommend that government both limit collection to only the data required for proper registration and explain why each piece of personal information is necessary. Further, privacy policies should be published and widely distributed, and the public should be given an opportunity to comment on any changes.

5. Registration systems should have strong notification policies.

Voters should be informed about their status, election information, privacy policies of the government, and security issues. As with audit trails, notification procedures can improve transparency; however, they are not always widely embraced. A recent survey found that approximately two-thirds of surveyed states do not notify voters who have been purged from election rolls. Voters should be notified by mail about their polling places, any changes that may affect their ability to vote, or any security breaches that expose private data.
6. Election officials should rigorously test the usability, security and reliability of
VRDs while they are being designed and while they are in use.

Testing is a critical tool that can reveal that “real-world” poll workers find interfaces
confusing and unusable, expose security flaws in the system, or that the system is likely
to fail under the stress of Election Day. All of these issues, if caught before they are
problems through testing will reduce voter fraud and the disenfranchisement of legitimate
voters. We recommend many different ways to test various aspects of VRDs throughout
the report. Examples include, evaluation of VRD interfaces by laypersons and experts
for consistency, feedback, and error handling; testing interfaces with real-world users and
conditions, including extreme or sub-optimal conditions such as high processor load or
network congestion; and allowing thorough, independent evaluations of the security and
reliability of the VRD.

7. Election officials should develop strategies for coping with potential Election Day
failures of electronic registration databases.

VRDs are complex systems. It is likely that one or more aspects of the technology will
fail at some point. Different strategies can be employed to adjust for various failures.
For example, Election Day verifications can be done via any of the following: paper
systems, personal computers or hand-held devices with DVD-ROMs or other methods of
holding static copies of the voter list, or via personal computers or hand-held devices
connected by electronic communication links to central VRDs. Regardless of the method
used, a fallback process should be devised to deal with a VRD failure. When appropriate,
these processes should operate in tandem with provisional balloting and other measures
designed to protect the voters’ right to vote.

8. Election officials should develop special procedures and protections to handle
large-scale merges with and purges of the VRD.

One of HAVA’s main requirements is that VRDs be coordinated with other state
databases (such as motor vehicle records). Ensuring that voter records reflect up-to-date
information from other databases can improve the accuracy of VRD, but coordination can
introduce errors from the same databases, thereby undermining accuracy. Because large-
scale merges and purges can render voters ineligible, the action should only be performed
by a senior election official with procedures that force some sort of manual review of the
changes. Further, if large-scale purges occur, they should be done well in advance of any
election, and anyone purged from the database should receive notification so that any
errors can be corrected.

Conclusion. State and local election officials face an ongoing and challenging task in
creating and implementing statewide voter registration databases. We hope that the
discussion and recommendations in this report will help inform officials and the public
on how to meet these challenges.

In issuing this report, we recognize that many states have been working diligently
toward meeting the federal requirement to have an operational statewide VRD. Both because many states will not meet this deadline, and because there will be ongoing maintenance and changes to any such system, state and local governments will also face the issues identified in this report well beyond the federal deadline. For this reason, we offer our continued guidance to officials who may wish to discuss any of the topics raised in this report.
2. Accuracy

Maintaining the accuracy of VRDs requires balancing two opposing concerns. The first concern is that a VRD needs to be inclusive to avoid disenfranchising legitimate voters. The names of all people who have registered and are duly eligible to vote must be included in the VRD; any omissions will exclude eligible voters from voting. The second, somewhat contrary concern is that the VRD must not be overly inclusive. To prevent fraud, only legally registered persons should be listed in the VRD as eligible to vote. We will address both of these concerns.

Not only must VRDs be accurate, the public must also believe that they are accurate. Because VRDs control access to voting, transparency is critical. It must be possible to convince those with interests in elections—including voters, political parties, politicians, academics, and the press—of the correctness of the VRDs. To provide transparency, policies should minimize the possibility of error and facilitate the correction of errors. Election officials must also take responsibility for ensuring adherence to these policies.

Data Entry and Errors. Most errors in individual database records occur during data entry. Errors include misspelling of names and addresses, incorrect recording of unique IDs, misidentification of people to whom access to the system should be allowed or denied, and misdirecting voters to the wrong polling place.

Data is entered into the VRD using one of two methods: manual entry or via automatic scanning devices. An automatic scanning device is a machine that looks like a copier and is used to scan a document into a computer system. Once the document is scanned in, software that can recognize characters transfers the data from the printed form into the VRD, while providing a clerk with the opportunity to correct mistakes. For either manual entry or automatic scanning, a well-designed user interface for the clerk will reduce errors. (Chapter 4 on usability contains further discussion of user interfaces.)

While quality control systems and appropriate supervision of data entry may reduce data entry errors, some errors will inevitably occur. Problems can arise because of variations in name spellings (Stevens or Stephens), first and last names that use accent marks or more than one capital letter (McMullen), and names that have no vowels (Ng). Incorrect or incomplete spellings of street names are additional potential sources of errors. Changes that are primarily entered in other state databases—such as changes in marital status and court-approved name changes—also complicate the challenge to accuracy.

Voter Verification and Notice. To minimize the impact of errors in the VRD, voters should be provided with (1) opportunities and methods to view and verify their data, and (2) notices about changes to their records. For example, the system might provide an Internet website or automated telephone service where voters can examine parts of their records, check their registration status, and determine their assigned polling places.

Whenever a voter or potential voter is determined to be ineligible to vote, the reason and source of information for the determination of ineligibility should be included in the VRD. This information should be retained so that someone who has been inappropriately labeled as ineligible can easily challenge the decision and demonstrate that an error has occurred.
Finally, election officials should mail each registered voter in the VRD a postcard with his or her registration information and information necessary for voting, such as polling place location or instruction for voting by mail. Voters also should be notified when their registration status changes. A voter removed from the rolls or reassigned to a new polling place should be notified by mail of the change and be provided an opportunity to seek correction if the change is an error. A voter recorded as having moved should be notified by mail sent to both the new address and the old address (similar to the method the United States Postal Service uses with respect to change of address forms).

To help correct errors in voting records, contact information for the person or office responsible for complaints and questions should be provided to voters. Further, voters and system administrators should understand how complaints and errors are addressed, and voters should receive feedback explaining the reasons for a final determination.

One recent survey found that approximately two-thirds of surveyed states do not notify voters who have been purged from the election rolls.13 Advance notice, which can be facilitated by the VRD, would provide voters with an opportunity to identify mistakes prior to an election. Care must be taken in designing such systems so that violations of privacy and security do not occur.

Notification processes are not always foolproof. For example, in 2004, 8,800 Maricopa County, Arizona, residents received election notification cards listing the wrong polling places in the wrong cities.14

To help minimize the impact of incorrect notification, we recommend that public notice be provided well in advance of an election. That notice should include the polling place's geographic location and official name (school, church, library name), a description of the exterior of the polling place to assist voters in locating the entrance, times of poll operation, residential boundary lines, and corresponding zip codes.

Some states allow voters to verify that they are registered through an Internet web site or by phone. For states that use Internet verification the user interface should protect voters' privacy by requiring the voter to provide his or her name and address and limiting the response to "yes, you are registered to vote and here is where you go" or "no, you are not registered to vote." The response should not include personally identifiable information about the potential voter.

Some provision needs to be made to deal with corrections on Election Day because not all errors can be corrected in advance. Poll workers are likely to be preoccupied with running an election and should not be allowed to make changes to the VRD. Under the right circumstances, after extensive testing for accuracy and usability, it might be possible to allow poll workers to send electronic reports of needed changes to election workers. If such a system is implemented, the updates would need to satisfy the auditing and authorization requirements discussed elsewhere in this report.

A simple alternative is to provide paper forms that are filled out at the polling place and submitted to election workers after the close of the election.

Generating the List of Registered Voters. A printed voter registration list for those precincts served by a polling place is typically used to verify registered voters. While

13 Electionline.org, op. cit.

14 Dennis Wagner, 2004, "8,800 Voting Cards Have Wrong Poll Address," The Arizona Republic, October 27, p. B5.
these printed lists are convenient and easy to control, sometimes the wrong list is provided to a polling place. To minimize the chance of the delivery of an incorrect list, we recommend that automated generation of polling place lists be used as much as possible and that the lists be carefully checked by at least two people. Local officials can conduct these checks, but they need to be made far enough in advance of elections to allow time for corrections.

Incorrect voter lists could be delivered to polling places independent of whether the data are provided on paper, DVD-ROMs, in a PC, or in a handheld device. In all of these cases, a computer operator might provide incorrect directions to the computer, resulting in the wrong electronic list going to the polling place. As with paper printouts, we recommend that electronic versions of voter lists be checked by at least two people well in advance of elections to allow time for corrections.

Information Deletion and Retention. In addition to being a list of currently registered voters, a VRD is a comprehensive set of records reflecting voter registration activity and administration. Consequently, we recommend that after records appear to be no longer relevant, they be retained in the VRD at least for the next two Federal elections or for the statutorily-mandated minimum of twenty-two months. The retained record should include a dated annotation stating that the voter is not eligible to vote, along with the reason for ineligibility. Thus, a VRD might contain information about those who have applied, been approved, been questioned, died, moved, or been denied the right to vote, as well as those who currently are eligible to vote.

When records were stored on paper, retaining old records imposed a non-trivial administrative burden. Electronic databases have made the cost of retention negligible, so old information can be retained relatively easily and inexpensively. When information is sufficiently old, it should be moved from the VRD into an offline archival database that is never purged. Retention of such information will enhance transparency and facilitate the correction of errors such as those that can occur when voters are thought to have died, moved, been convicted of a felony, or otherwise determined not to be eligible to participate in a public election.

Other Databases. HAVA requires that states authenticate each potential voter by cross-checking with other state databases—in particular, databases of driver’s licenses. If a potential voter does not have a state driver’s license, then the last four digits of the voter’s Social Security number must be used for authentication.

Because other databases can be inaccurate as a result of ambiguous or incorrectly entered data or computer-related problems, wholly automated procedures are risky. Consequently, we recommend that other databases not be used to enroll or de-enroll voters automatically. External databases could be used for initial screening, but an appropriate election official should perform any final determination of voter eligibility or

14 HAVA provides for coordination of voter lists with other state agency databases (42 U.S.C. § 15483(a)(1)(A)(iv)) and requires that registration applications include either a current and valid driver’s license or the last 4 digits of the applicant’s Social Security number (42 U.S.C. § 15483(a)(5)).
ineligibility. We suggest that every change, addition, or deletion to the VRD require explicit approval by an individual authorized to make that change. We discuss how this might be done in Chapter 5 on security.

Errors can arise because of court-approved changes in legal name that conflict with existing birth records, motor vehicle records, or other state records. Name similarities also can create problems. For example, a death record database may show that Mr. John Smith who lives at 254 Vine St. has died. There may be a Mr. John Smith, Jr. living at the same address who is eligible to vote. If the death record database is applied without cross checking, John Smith Jr. may learn on Election Day that he has been denied his right to vote.

Databases also can be inaccurate or unreliable because of computer viruses, programming errors, and system failures. For example, in 2003 the Maryland Motor Vehicle Administration (MVA) offices were attacked by a computer worm. The worm shut down the MVA’s computers and telecommunications systems, cutting them off from all forms of remote communication and disrupting operations in all 23 MVA offices located throughout the state. A second event occurred on January 20, 2004, when the MVA could not process work on the mainframe computer for about an hour after opening. The problem was characterized as a computer glitch. A further risk to the accuracy of databases is insider fraud, involving either the VRD itself or external databases, such as driver’s license databases, that are used to authenticate voters. Therefore, election officials should carefully consider if the accuracy and security of external databases is sufficient to meet voter registration needs. Risks associated with insider fraud are discussed further in Chapter 5 on security.

Avoid Large-Scale Merges and Purges. Computers make it easy to automate sweeping batch updates to a VRD; at the same time, errors can be magnified by the use of automation. In the context of VRDs, a batch update is a group of updates received from what is believed to be an authorized source (e.g., a local county). Because many voter records could be affected by a single batch transaction, a greater level of authority should be required to perform a batch update than is required to make individual changes. As is the case with all updates, election officials should develop policies and procedures to ensure the accuracy of large batch updates to the VRD. For example, a policy might prohibit batch updates affecting more than a maximum number of voters or jurisdictions (essentially requiring that large changes be broken down into multiple smaller batches that can be reviewed more effectively), or a policy might require individualized review and approval of each voter record that is affected. A policy might specify that batch updates be reviewed by several people or mandate that audits of a statistically-significant

19 For example, a Maryland MVA employee was charged with conspiring with others to sell more than 150 state identification cards. See Eric Rich, 2005, “MD, MVA Employee Charged in ID Card Sales,” Washington Post, April 23, p. B03. For a collection of stories of security problems of motor vehicle records, see Center for Democracy and Technology, Tracking Security at State Motor Vehicle Offices, available online at http://www.cdt.org/privacy/0303131motorvehicle.shtml.
random sample of records in the batch be performed before approving the batch update.

Given the inaccuracies that exist in many governmental databases, large-scale automated merges between databases increase the risk of errors in a VRD.20 Consequences of inaccuracies in other databases could result in the widespread disenfranchisement of eligible voters, the inclusion of ineligible voters in a VRD, or both.

We recommend special caution in deploying large-scale purges of VRDs. The move to a statewide VRD may make it tempting to attempt to automatically eliminate duplicates by comparing lists of eligible voters across counties, something that previously could not be done. However, automatic purges of duplicate entries could disenfranchise large numbers of legitimate voters. If large-scale purges occur, they should be done well in advance of any election, and all people whose names are purged from the VRD should receive notification in sufficient time for them to be able to correct any errors arising from the purge.

Accountability. Clearly defined accountability for all changes to the database is a fundamental requirement for helping instill voter confidence in VRDs. Voters, politicians, election officials, the press, and others should be able to determine who is responsible for changes to the VRD.

These changes include, changes to the data such as adding new voters, purging voter records, changing addresses, names, etc.; changes to the software configuration such as incorporating new software releases into the VRD; changes to the security policy and access rights; or changes to the database design. Any of these changes can adversely affect the data, so in order to provide the desired accountability there must be a record of each change, when it occurred, and who approved the change.

Audit Trail. The record of the changes to the VRD is called an audit trail. In order to ensure accuracy and transparency, VRDs must be auditable. VRDs that can be independently verified, checked, and proven to be fair will increase voter confidence and help avoid litigation.

The audit trail should include the record of all possible changes mentioned, namely, data changes, configuration changes, security policy changes, and database design changes. Although we call this an audit trail, it is not a single entity. The records of configuration, policy and design changes, including who approved them, can be kept in computer files or on paper as long as they are auditable by a third party. The record of changes to the data, because there will be many of them, must be kept in computer files to facilitate auditing.

In DBMS applications, there are typically two files generated because of a change to the database. The transaction log records in a file the data values before and after the change occurred, as well as the time of the change. The audit log records information about the user ID of the person who made the change. The transaction log is used to provide backup should a system failure occur.

The content of audit logs varies among DBMSs. In some, it is possible to configure the system so that the audit log tracks changes to the security of the system (the

20 In 1988, Congress enacted the Computer Matching and Privacy Protection Act to address some of the unfairnesses and inaccuracies arising from federal government use of computer matching techniques. See Public Law 100-503, 102 Stat. 2507 (codified at 5 U.S.C. §552a).
permissions given to particular users), changes to the data, and changes to the database design. For the purposes of the VRD auditing requirements, this is not sufficient. The VRD should record not only which user made the change, but also the identification of the person who authorized the change. Therefore, it may not be possible to rely on the commercial DBMS's auditing capabilities alone for the audit trail that a VRD requires. VRD implementers will need to augment the application code of the commercial database audit log to provide a complete audit trail.

Well-maintained audit trails are critical because they may allow reconstruction of the circumstances of a system failure, thereby facilitating future improvements to access policies and possibly to the database itself.

Approach Mechanism. Given that there is an audit trail that records whose approval was given for each change, state or local officials must set policies on who is actually authorized to make changes. Access control policies are discussed in more detail in Chapter 5 on security. We assume that the person with ultimate authority to make the changes is an election official, and we recommend that the responsibilities and authorities of such election officials be clearly defined and publicly available.

For system changes, we recommend that there be a formal change control process that states how changes to the system configuration, security policy, and database design are reviewed, approved, and recorded.

Summary reports or excerpts from audit trails should be provided to supervisors and made available to external auditors. These reports should be inspected frequently for unusual or suspicious activities such as access from unexpected Internet Protocol (commonly referred to as "IP") addresses or at unusual times of day, surges in the number of accesses by a single user, and other anomalous activity.

Conclusion. Well-designed accuracy features must be accompanied by appropriate training and resources. Even the best designed VRD will be of little value if officials do not monitor and verify that only authorized changes are made to the VRD. Log files that are never read and system quality control processes that are not supervised will not ensure database accuracy. Since accuracy should be viewed as an ongoing responsibility, election officials should assign specific staff to oversee these continuing activities.