EXHIBIT B
EXPERT REPORT

STEPHEN ANSOLABEHERE

February 26, 2014

I. Statement of Inquiry

1. I have been asked to examine minority representation in the Congressional Districts in the State of Texas under Plans C100, C220, and C235. I have been asked to examine racial composition of districts, especially Citizen Voting Age Population, and voting patterns in districts, especially the degree of racial group cohesion and polarization. I have been asked to examine the configuration of and voting in districts in the South and Southwest parts of the state. I have also been asked to examine the division of Travis County under Plans C235 and C100 and the division of Plan C100's CD 25.

II. Background and Qualifications

2. I am a professor of Government in the Department of Government at Harvard University in Cambridge, MA. Formerly, I was an Assistant Professor at the University of California, Los Angeles, and I was Professor of Political Science at the
Massachusetts Institute of Technology, where I held the Elting R. Morison Chair and served as Associate Head of the Department of Political Science. I directed the Caltech/MIT Voting Technology Project from its inception in 2000 through 2004, am the Principal Investigator of the Cooperative Congressional Election Study, a survey research consortium of over 250 faculty and student researchers at more than 50 universities, and serve on the Board of Overseers of the American National Election Study. I am a consultant to CBS News’ Election Night Decision Desk. I am a member of the American Academy of Arts and Sciences (inducted in 2007).

3. I have worked as a consultant to the Brennan Center in the case of *McConnell v. FEC*, 540 US 93 (2003). I have testified before the U.S. Senate Committee on Rules, the U.S. Senate Committee on Commerce, the U.S. House Committee on Science, Space, and Technology, the U.S. House Committee on House Administration, and the Congressional Black Caucus on matters of election administration in the United States. I filed an amicus brief with Professors Nathaniel Persily and Charles Stewart on behalf of neither party to the U.S. Supreme Court in the case of *Northwest Austin Municipal Utility District Number One v. Holder*, 557 US 193 (2009). I am consultant for the Rodriguez plaintiffs in *Perez v. Perry*, currently before the District Court in the Western District of Texas (No. 5:11-cv-00360 W. D. Tex), and the Gonzales intervenors in *State of Texas v. United States* before the Federal District Court in the District of Columbia (No. 1:11-cv-01303); I consulted for the Department of Justice in *State of Texas v. Holder*, before the Federal District Court in the District of Columbia (No. 1:12-cv-00128); I consulted for the Guy plaintiffs in
Guy v. Miller in Nevada District Court (No. 11-OC-00042-1B, Nev. Dist. Ct., Carson City); I consulted for the Florida Democratic Party in In re Senate Joint Resolution of Legislative Apportionment in the Florida Supreme Court (Nos. 2012-CA-412, 2012-CA-490); I am consultant for the Romo plaintiffs in Romo v. Detzner in the Circuit Court of the Second Judicial Circuit in Florida (No. 2012 CA 412); I am consultant for the San Antonio Water District intervenor in League of United Latin American Citizens v. Edwards Aquifer Authority (No. 5:12cv620-OLG, Federal District Court for the Western District of Texas, San Antonio Division); I am consultant for the Harris plaintiffs in Harris v. McCrory in U. S. Federal District Court in North Carolina Middle District (No. 1:2013cv00949).

4. My areas of expertise include American government, with particular expertise in electoral politics, representation, and public opinion, as well as statistical methods in social sciences. I am author of numerous scholarly works on voting behavior and elections, the application of statistical methods in social sciences, legislative politics and representation, and distributive politics. This scholarship includes articles in such academic journals as the Journal of the Royal Statistical Society, the American Political Science Review, the American Economic Review, the American Journal of Political Science, Legislative Studies Quarterly, the Quarterly Journal of Political Science, Electoral Studies, and Political Analysis. I have published articles on issues of election law in the Harvard Law Review, Texas Law Review, Columbia Law Review, New York University Annual Survey of Law, and the Election Law Journal, for which I am a member of the editorial board. I have coauthored three scholarly

5. I have been hired by the Rodriguez Plaintiffs in this case. I am retained for a rate of $400 per hour, which is my standard consulting rate.

III. Data and Sources

6. Data on population and voting in the Voting Tabulation Districts (VTD) and Congressional Districts (CD) come from the redistricting website of the Texas Legislative Council. (http://www.tlc.state.tx.us/redist/redist.html)

7. Data on Citizen Voting Age Population (CVAP) for 2008 and 2010 come from the American Community Survey (ACS). Specifically, I rely on the 5-year average of the ACS from 2006-2010 for estimates of the CVAP for 2008 and the 5-year average of the ACS from 2008-2012 for estimates of the CVAP for 2010. The CVAP for 2000 come from the Census Enumeration Long-Form Survey from 2000, which is no
longer used. (http://www.census.gov/population/www/cen2000/briefs/phc-t31/index.html)

8. One question regarding the ACS is whether its estimates of population align with the Census’ official enumeration. The ACS is a survey of approximately 3 million persons nationwide conducted each year by the Census Bureau. In the case in Perez v. Perry in the Federal District Court in the Western District of Texas, I filed a Response to Professor Rives Rebuttal Report on the Use of the American Community Survey and Estimates of the Citizen Voting Age Population (Document 272-1 submitted August 31, 2011). The 2005-2009 ACS estimated too little population and Voting Age Population (VAP) compared with the Census Enumeration, which raised questions about the CVAP estimates. The gist of my response report was that the discrepancies between the 2010 enumeration and the ACS 2005-2009 CVAP data, which were used to evaluate districting maps in Texas, was mostly a function of time trend. (See, e.g., page 5 of my response report.)

9. The ACS 2008-2012 provides very good estimates of population and VAP. The ACS estimates the total population of Texas to be 25,208,895 and the VAP of Texas to be 18,359,570, compared with the Census enumeration count of 25,145,561 total population and 18,279,738 VAP. The population and VAP figures for the State differ by a trivial amount – 63,334 total population difference and 79,832 VAP difference. These discrepancies amount to differences of two tenths of one percent for total population and four tenths of one percent for VAP. Differences of this
magnitude will not affect any inferences drawn about the composition of the districts.

IV. Findings

A. Overview

10. This report provides information about the racial composition of CDs and racial voting patterns in the State of Texas. The report provides updated information on CVAP for the State, for specific Counties and for all CDs under Plans C100, C220, and C235 using ACS 2008-2012. (See Section IV B and Table 5.)

11. It is possible, with a reasonable degree of effort, to create more minority opportunity congressional districts in the State of Texas than were created in Plan C235. Overall, there were 11 minority opportunity districts under Plan C100, and there are 11 or 12 minority opportunity districts under Plan C235, depending on the classification of CD 23. Plan C220 demonstrates that it was possible to draw at least 13 districts in which minorities can elect their preferred candidates. Plan C220 is a reasonable demonstration map. It was drawn by the Federal District Court in the Western District of Texas in the case of Perez v. Perry following traditional districting principles and practices. (See Section C.)
12. A specific focus of this report is on the population, voting patterns, and number of minority opportunity districts in the South and Southwest portions of the state. This region stretches from El Paso in the West to San Antonio and Austin in the South Central part of the State, to Corpus Christi and to Cameron County on the southern tip of Texas. In this region of the State, it is possible to create at least one more minority opportunity district than was created under Plan C235. The report shows this two ways. First, that fact is demonstrated using Plan C220, a map drawn by the Federal District Court in the Western District of Texas in the case of Perez v. Perry. This map was drawn in accordance with traditional districting principles by the Federal District Court. That Plan has at least one more minority opportunity CD than C235. Second, this is shown with reference to populations of VTDs in Majority HCVAP CDs under Plans C100 and C235. (See Section D.)

13. This report shows that that CD 25 in C100 was a minority opportunity district owing to the high rate of cross over vote among Whites and the cohesion of minority voters in this area. (See Section E, especially part 5.)

14. This report shows that the division of Travis County and of Plan C100’s CD 25 followed racial lines more strongly than other lines. In particular race is a stronger predictor than party vote of which VTDs in Travis (or in Plan C100’s CD 25) are placed in specific CDs under C235. (See Section F.)
B. Population Growth

1. State of Texas

16. Most of the growth in total persons, total persons of voting age, and total number of citizens of voting age occurred among racial or ethnic minorities. Table 1 provides figures on population growth in the State of Texas from 2000 to 2010.

17. The number of Hispanics increased by 2,791,255, from 6,669,666 to 9,460,921. As a percent of the total population of Texas, Hispanics increased from 32.0% to 37.6% of all persons in Texas between 2000 and 2010.

18. The number of Blacks (Black non-Hispanic) increased by 582,639, from 2,493,057 to 3,075,696. As a percent of the total population of Texas, Blacks increased from 12.0 to 12.2% of all persons in the State of Texas from 2000 to 2010.

19. The number of Whites (White Alone) increased by 464,032, from 10,933,313 to 11,397,345. As a percent of the total population of Texas, Whites decreased from 52.4% to 45.3% of all people in the State of Texas from 2000 to 2010.
20. Of the 4.3 million persons added to the population of Texas from 2000 to 2010, 78.6 percent were Hispanic or Black and 10.8 percent were White.

21. Texas added 2,591,265 Citizens of Voting Age (CVAP) from 2000 to 2010. In calculating CVAP I use the 2008-2012 estimate of the CVAP from the American Community Survey conducted by the United States Census Bureau, as provided by the Texas Legislative Council and figures made available through the Census website (http://www.census.gov/rdo/data/voting_age_population_by_citizenship_and_race_cvap.html).

22. The number of Hispanic Citizens of Voting Age (HCVAP) increased by 1,236,607, from 2,972,988 to 4209,595. As a percent of all Citizens of Voting Age in the State of Texas, Hispanics increased from 22.3% to 26.5% from 2000 to 2010.

23. The number of Black Citizens of Voting Age increased by 432,549, from 1,638,026 to 2,070,575. As a percent of all Citizens of Voting Age in the State of Texas, Blacks increased from 12.3% to 13.0% from 2000 to 2010.

24. The number of White Citizens of Voting Age increased by 659,267, from 8,305,993 to 8,965,260. As a percent of all Citizens of Voting Age in the State of Texas, Whites decreased from 62.5% to 56.4% from 2000 to 2010.
25. Minorities accounted for most of the growth of the Citizen Voting Age Population from 2000 to 2010. Of the 2.5 million additional Citizens of Voting Age in the State Texas over the past decade, 64.4 percent of those additional adult citizens were Hispanic or Black and 25.4 percent were White Alone.

2. Largest Counties

26. In this section I focus on the six most populous counties in the State of Texas and the size and growth of their Citizen Voting Age Populations. The analysis elucidates where growth in the eligible electorate is occurring, among which groups, and at what rates.

27. I use the 2006-2010 5-year average of the American Community Survey (ACS) population estimates to estimate the 2008 Citizen Voting Age Population, as 2008 is the mid-year of that 5-year window. I use the 2008-2012 5-year average of the ACS to estimate the 2010 Citizen Voting Age Population.

28. Table 2 presents the Citizen Voting Age Population among racial groups in the State of Texas for the years 2008 (2006-2010 ACS average) and 2010 (2008-2012 ACS average). The table provides CVAP estimates for the six most populous counties and the state as a whole.
29. These six counties accounted for half of the increase in CVAP in the state from 2008 to 2010 (i.e., from the 2006 to 2010 ACS to 2008 to 2012 ACS). The CVAP of the State of Texas grew by an estimated 614,145 from 2008 to 2010; the six most populous counties added 299,598 in that time.

30. Statewide, Hispanic CVAP and Black CVAP are growing at a much faster rate than White CVAP. White CVAP increased 144,450, a 1.6% over the two year span; Hispanic CVAP increased 320,025, an 8.2% rate over the two year span; Black CVAP increased 83,650 and at a 4.2% rate over the two-year span.

31. Population projections for the CVAP of the State of Texas and for particular groups and areas can be made by assuming the same rate of growth from 2010 to 2014 as occurred for each group from 2008 to 2010. Under that assumption, I project that there are 9,254,443 White adult citizens, 4,928,274 Hispanic adult citizens, and 2,233,601 Black adult citizens in the State of Texas in 2014. I project that total CVAP in Texas in 2014 is 17,187,825. Hence, I project that Whites comprise 53.8% of the CVAP; Hispanics, 28.7% of the CVAP; and Blacks 13.0% of the CVAP. The remaining 4.5% CVAP consists of those who identify as Asian, American Indian, or mixed or other races.

1 I make this projection using simple compounding on a 2-year basis. That is, I multiply the 2010 CVAP estimate times the square of 1 plus the two year rate of growth. So, if a group grew at 5 percent every two years, and had 100,000 persons in 2010, I project that it would have 1.05*1.05*100,000 = 110,250.
32. In each of these six largest counties, minority CVAP grew at a much faster rate than White CVAP. And, in every one of these counties, the number of Hispanics adult citizens increased by more than the number of White adult citizens did Whites.

33. In the Dallas-Fort Worth area (Dallas and Tarrant Counties), for example, the total CVAP increased from 2,414,179 to 2,502,140 from 2008 to 2010, an increase of 3.6%. Whites accounted for only 4,500 persons of that growth. In these two counties combined White CVAP grew by only 0.3%. By comparison, Hispanic CVAP rose by over 46,000 persons, an 11.3% rate, and Black CVAP rose by more than 25,000 persons, a 4.9% rate. There are 1,379,185 White Citizens of Voting Age in Dallas and Tarrant counties combined and 988,595 Black and Hispanic Citizens of Voting Age in these counties. Assuming the same rates of growth have continued through 2014, I would project that there are today approximately 1,151,592 Black and Hispanic adult citizens in Dallas and Tarrant counties and 1,387,473 White adult citizens

C. Overall Appraisal of Minority Opportunity Districts

34. This section offers a summary assessment of the number of majority Black, majority Hispanic, majority Black plus Hispanic, and cross over districts in the existing Congressional District map for the State of Texas (plan C235), in the Congressional District map used to elect Texas' Congressional Delegation from 2006
to 2011 (Plan C100), and in the map drawn by the Federal District Court in the
Western District of Texas in San Antonio (Plan C220). Plan C100 offers a baseline
for comparison with Plan C235. Plan C220 offers a map that demonstrates how
many minority opportunity districts could be constructed. This section does not
offer the functional analysis of these districts. That is offered in section E.

35. I use Plan C220 as a reference map because it was drawn by the Federal District
Court, which followed traditional districting principles and districting criteria.\(^2\)
Although the Supreme Court of the United States intervened and stopped the use of
the map for the 2012 election, it did not invalidate the map itself. The Supreme
Court did criticize the district configuration in the Dallas-Fort Worth area in C220,
and C235 adjusted the boundaries of CD 33. CD 33 under C220 and CD 33 under
C235 in Dallas and Tarrant Counties are majority Black plus Hispanic districts. The
adjustment to the boundaries in Dallas and Tarrant counties, then, did not change
the number of minority districts that Plan C220 could achieve in that area. As such,
C220 demonstrates how many minority opportunity districts might be constructed
with reasonable effort and following traditional districting criteria and principles.

36. Table 3 presents my overall assessment of the number and types of minority
opportunity districts under Plans C235, C100, and C220.

the Western District of Texas, Case 5:11-cv-00360-OLG-JES-XR, especially pages 5-7
and 16-17.
37. Based on racial composition of districts and voting patterns, analyzed later in this report, I determine that there were 11 districts in which Blacks or Hispanics had the opportunity to elect their preferred candidates under Plan C100.

38. There were 7 majority Hispanic CVAP districts under Plan C100. These were CDs 15, 16, 20, 23, 27, 28, and 29. There was 1 majority Black CVAP district under Plan C100’s CD 30. There were two majority Black plus Hispanic districts, CDs 9 and 18, and one cross over district, CD 25. The Federal District Court in the District of Columbia determined based on evidence presented in trial that CD 25 was a functioning cross over district in its rulings in the case of State of Texas v. United States. The State of Texas’ expert agreed during that trial that CD 25 is district in which minorities have the ability to elect their preferred candidates in general elections. I present analyses below of CD 25 under Plan C100. Please see my reports in the trial in Federal District Court, Doc. 123-1 (filed Aug. 8, 2011), in the Western District of Texas in San Antonio (under the Constitution of the United States and Section 2 of the Voting Rights Act – hereafter referred to as the San Antonio Case) and in the Federal District Court, Doc. 77-3 (filed Oct. 25, 2011), and Doc. 115-3 (filed Jan. 17, 2012), in the District of Columbia (under section 5 of the Voting Rights Act) for further evidence on the question of whether CD 25 was a functioning cross over district under C100.

4 Op cit., page 75, especially footnote 4.
5 This is the same as Doc. 155-2 (filed Jan. 17, 2012), in that case.
39. There are as many as 12 districts in which Blacks or Hispanics have the opportunity to elect their preferred candidates under Plan C235.

40. There are 8 majority Hispanic CVAP districts under Plan C235. These are CDs 15, 16, 20, 23, 28, 29, 34, and 35. There are 2 majority Black CVAP districts under Plan C235’s CDs 9 and 30. There are two majority Black plus Hispanic CVAP districts, CDs 18 and 33, and no cross over districts.

41. CD 9 under Plan C235 is a majority Black plus Hispanic CVAP district if one counts only those identified as Black Alone as Black CVAP (BCVAP). CD 9 is Majority Black CVAP if one counts as Black those who identify as Black Alone or Black and White or Black and American Indian. Those categories combine to 50.2% BCVAP.

42. CD 23 under Plan C235 is majority HCVAP. However, Hispanic preferred candidates do not reliably win majorities of the vote in this district in statewide elections. In my original assessment of the exogenous elections in CD 23 under Plan C185, Hispanic preferred candidates did not reliably win majorities in the VTDs in CD 23. Based on that evidence, I concluded that CD 23 in C185 may not be a minority ability district.\(^6\) In Section E, I will revisit this question below for CD 23 in Plan C235 relying on elections from 2008 to 2012. It should be noted here, though, that in exogenous elections, in CD 23 under Plan C235, candidates preferred by

Hispanics won only 47.4% of the vote on average. [See Table 10.] Thus, there are 11 or 12 districts in which minorities have the opportunity to elect their preferred candidates under Plan C235.

43. Plan C220 contained 13 districts in which Blacks or Hispanics have the opportunity to elect their preferred candidates.

44. Plan C220 had 8 majority Hispanic CVAP districts. These were CDs 15, 16, 20, 23, 27, 28, 29, and 35. There was 1 majority Black CVAP district under Plan C220 CD 30. There were three majority Black plus Hispanic CVAP districts, CDs 9, 18 and 33, and one cross over district. Plan C220 maintained CD 25 as a cross over district.

45. Plan C220 demonstrates that it is possible to create at least one more minority opportunity district than was constructed in Plan C235 and at least two more than existed under Plan C100. Plan C220 was constructed by the Federal District Court following reasonable districting criteria.

D. Potential for Hispanic Majority CDs in South and Southwest Texas

46. I assess the number of potential Hispanic majority or Hispanic opportunity CDs that could be created in South and Southwest Texas in two ways. First, I calculate the population of all Voting Tabulation Districts (VTDs) in majority Hispanic CDs in
the South and Southwest Texas region in either C100 or C235. The Texas State Legislature created majority Hispanic CDs in South and Southwest Texas in these two maps, and the set of all VTDs in these districts offers one way to define the population that reasonably could be put in majority Hispanic CDs in this region.

Second, I examine a demonstration map to determine whether it is possible to configure CDs in this region so as to increase the number of majority Hispanic CDs beyond what was accomplished in Plan C235. Rather than work from a new map, I use C220 as the demonstration map.

47. First, consider the potential number of majority Hispanic districts based on population in the envelope of all VTDs in majority Hispanic CDs in either C100 or C235. These are VTDs in CDs in South and Southwest Texas that are or were majority Hispanic as constructed by the Texas State Legislature.

48. Table 4 presents a count of the total number of persons in VTDs that were in majority Hispanic Districts in the South and Southwest part of the State of Texas in either C100 or C235. The table presents the tabulation for the majority Hispanic CDs and also including a cross over district in the region, Plan C100’s CD 25.

49. This calculation suggests that there is the potential to create at least 7 majority Hispanic CDs in South and Southwest Texas. There were over 5.3 million people in this set of VTDs, and the ideal population for a Congressional District in the State of Texas is 698,488. The ratio of the total population in the set of VTDs to the ideal
district population is 7.6 districts. Consideration of plan C220 will further show that this many districts could be constructed while following traditional districting principles commonly accepted by courts.

50. Including CD 25 under Plan C100 (a cross over district) in this calculation suggests that it is possible to create at least 8 minority opportunity districts in South and Southwest Texas. The total population in the set of VTDs in minority opportunity districts in this area is more than 8 times the population of an ideal district, if all of the VTDs in Plan C100’s CD 25, which was a cross over district, are included in the calculation.

51. It may be possible to include other counties, such as Ector and Midland, in this area. My analysis only focuses on the set of VTDs that the State Legislature placed in Majority Hispanic CVAP districts under either Plan C100 or Plan C235.

52. A second approach is to consider an alternative map that demonstrates that at least 7 majority Hispanic CVAP districts (or 8 minority opportunity districts) can in fact be drawn in this region of the State. Again, C220 serves as such a demonstration map.

53. Table 5 presents the CVAP statistics for Whites, Blacks, and Hispanics in each of the districts in the State of Texas under Plans C100, C220, and C235.
54. C100 contained 6 majority Hispanic CDs in South and Southwest Texas. These were CDs number 15, 16, 20, 23, 27, and 28. In addition, C100 contained a crossover district, CD 25, in this area.

55. C235 contains 7 majority Hispanic CVAP CDs in South and Southwest Texas. These are CDs number 15, 16, 20, 23, 28, 34, and 35. CD 23 under the configuration in Plan C235 might not function as a district in which minorities can elect their preferred candidates, as discussed in section E. Plan C235 has no crossover districts in the State of Texas, and it has no majority Black plus Hispanic districts in South and Southwest Texas.

56. Examination of Plan C220 reveals that 7 majority Hispanic CDs in South and Southwest Texas could have been created. Under Plan C220 the 7 majority Hispanic CDs in this part of the state are CDs 15, 16, 20, 23, 27, 28, and 35. A configuration along the lines of Plan C220 would preserve CD 27 by keeping most Nueces County Hispanics in a majority Hispanic CVAP district in South Texas.

57. Plan C220 also preserved Plan C100’s CD 25, which was determined to be a crossover district by the Federal District Court in District of Columbia in the Section 5 trial involving the districting process in Texas and which I concluded was a crossover district.
58. Consequently, based on a demonstration plan and on the total population in Hispanic majority CDs in the area, it is possible to create at least 7 majority Hispanic CVAP districts. And, Plan C220 further demonstrates that it is possible to maintain a cross over district in this area. Plan C235 creates 7 majority Hispanic districts in this area, one of which (i.e., CD 23) may or may not function as a district in which minorities have the ability to elect their preferred candidates, and no cross over districts.

E. Voting Patterns in Districts

59. Classification of districts as minority opportunity districts depends on the voting patterns in the districts, as well as the racial composition of the districts. The opinion of the Supreme Court of the United States in *Thornburg v. Gingles* established that ecological regression may be used to measure the degree of cohesion in voting among racial groups and the degree of polarization between racial groups. These factors are one of several forms of evidence that may be used to determine whether districts may have discriminatory effects. *(478 US (1986) 30, 52-59)*

60. My reports in the proceedings in the San Antonio Case and in the Section 5 Case provide evidence of racial voting patterns in the State of Texas, in various counties
and regions in the state, and in Congressional Districts in question. I refer the Court to those reports.

61. This report provides further analysis using elections from 2012, as well as 2008 and 2010, and analyzes voting patterns under Plan C235 as well as C100. I examine federal races in 2008 and 2012 (U. S. President, U. S. Senate, and U. S. House), as the Congressional Districts in question involve federal offices. I also examine Governor and Attorney General in 2010, as these are two prominent statewide races. I examine statewide races (except in the case of U. S. House) as the candidates are the same everywhere, permitting readier comparison of results across districts.

1. Statewide Analysis of Voting Patterns

62. Ecological regression analysis reveals that there is a high degree of racial polarization and high group cohesion in the State of Texas. Table 6 presents ecological regression estimates of the percent of each group who voted for the Democrat over the Republican for U. S. President, U. S. Senate and U. S. House in 2012.

63. In the 2012 elections, nearly all Blacks voted for Democratic candidates in the elections for U. S. President, U. S. Senate, and U. S. House. Approximately 70 to 80 percent of Hispanics voted for Democratic candidates in these elections, statewide. Only 6 to 13 percent of Whites voted for Democratic candidates in these elections.

2. Cohesion and Polarization estimates in Minority Opportunity CDs in South and Southwest Texas, and Travis.

64. Ecological regression analysis shows that there is a high degree of racial cohesion and racial polarization in South and Southwest Texas. I define the region, for the sake of convenience as all VTDs that that were in Congressional Districts 15, 16, 20, 23, 25, 27, or 28 under Plan C100 or that are in Congressional Districts 15, 16, 20, 23, 28, 34, or 35 under Plan C235. (One may also define the region as a set of counties. The results do not differ substantively.)

65. Table 7 presents an analysis of voting behavior of racial groups in potential minority opportunity districts in South and Southwest Texas. The vote variable in the regression (dependent variable) is the Average Percent of Two-Party Vote Won by Democratic Candidates for President in 2008, U. S. Senate in 2008, Governor in 2010, Attorney General in 2010, President in 2012, and U. S. Senate in 2012. No U. S. House elections are included in this average, so this represents the percent of vote won by Democratic candidates in the Exogenous Elections in the VTDs in these districts. These particular races are chosen because they are immediately
comparable to U. S. House elections as federal elections (President and Senate) or at
or near the top of the ballot (Governor or Attorney General). They are statewide
elections so the results reflect the voters’ evaluations of the same candidates in all
parts of the district.

66. The top panel of Table 7 corresponds to the districts in Plan C100. Within most
of the Congressional Districts in South and Southwest Texas under Plan C100 racial
groups exhibited a high degree of cohesion. There was also high polarization
between Whites on one side and Hispanics and Blacks on the other. Roughly 80
percent of Hispanics and 90 percent of Blacks voted for Democratic candidates in
these districts. Typically 5 percent of Whites in this area voted for Democratic
Candidates for U. S. President or U. S. Senate.

67. There is one notable exception to the pattern of polarization in these districts.
CD 25 under Plan C100 shows a high level of cohesion among minorities, as in the
other districts, but a relatively low level of cohesion among Whites. In this district a
minority of 41.6% Whites voted for candidates preferred by Blacks and Hispanics.
The district with the next highest level of White support for minority preferred
candidates was CD 20, with 20% voting for the candidate preferred by Blacks and
Hispanics. Under Plan C100, then, CD 25 exhibited substantial cross over vote
among Whites.
68. The bottom panel of Table 7 presents estimates of voting patterns in exogenous elections among racial groups in the CDs in South and Southwest Texas under Plan C235. As with the configuration of districts under Plan C100, there is high polarization between Hispanics and Whites in this area. Hispanic vote for Democratic candidates ranges from 79 to 83 percent, across districts. White vote for minority-preferred candidates ranges from 0 to 20 percent.

69. Under Plan C235, there is no CD in which Whites exhibit a high level of cross over voting, even though this is the same set of elections as in the top panel in the table (corresponding to Plan C100). This is because the White voters that were in CD 25 under C100 and crossed over in significant numbers are split across several districts in Plan C235. Specifically, those voters end up in CD 35 under Plan C235 (see Table 7) and CDs 10, 21, and 25 (not shown in Table 7) under Plan C235.

70. The 2012 U. S. House elections (the endogenous elections) show similar patterns of cohesion and polarization to the statewide (exogenous) elections. Table 9 provides estimates of voting behavior of racial groups in the 2012 U. S. House elections under Plan C235.

71. Hispanics show a very high level of cohesion, consistently across districts in both Plan C100 and Plan C235. Roughly, 75 to 90 percent of Hispanics vote for Democratic candidates in every district in this region. Under Plan C100 Whites in all but CD 25 voted from 0 to 20 percent for minority preferred candidates. In CD
25, however, an estimated 53 percent of Whites voted for the Democrat in the 2008 U. S. House election and 37 percent of Whites voted for the Democrat in the 2010 U. S. House election. Nonetheless, the Democrat, who was preferred by minority voters, won both elections.

72. In the 2012 U. S. House election conducted under C235, racial groups vote much more cohesively within each district. Democratic candidates won between 78% and 97% of the Hispanic vote, depending on the district. Also, the configuration of the districts under the interim map was such that no district exhibits a high rate of crossover voting among Whites. Under Plan C235, he Democratic candidates won 20 and 22 percent of the White vote in CDs 20 and 35, respectively.

73. In sum, there is high racial cohesion and high polarization in all Hispanic CVAP majority districts in South and Southwest Texas Congressional Districts in Plan C235 and in all but one district in that area in Plan C100. This pattern holds true in both the exogenous and endogenous elections, and in the 2012 elections, as well as the 2008 and 2010 elections. The exception to this pattern was CD 25 under Plan C100, where there was substantial support for minority-preferred candidates among White voters. Plan C235 divides the racial groups in the South and Southwest Texas area so that the highest vote among Whites for minority-preferred candidates is approximately 20 percent.
74. The reconfiguration of three districts from Plan C100 is of particular concern, CD 23, CD 25, and CD 27. The treatment of the populations in these districts affects the configuration of all other districts in the South and Southwest Texas region.

3. CD 23 Under Plan C235

75. As established in my report to the Federal District Court in the District of Columbia in the Section 5 trial, CD 23 was a district in which minorities had the ability to elect their preferred candidates, but the reconfiguration of the district reduced the voting strength of minorities in this area. My earlier report (especially sections C and D) detail how this occurred.⁸

76. A key test of the performance of a district is whether candidates preferred by minorities actually win a majority of the vote in elections in the VTDs in a proposed district. Table 10 presents the percent of the two-party (Democrat plus Republican) vote received by minority-preferred candidates in 2012 federal elections and on average from 2008 to 2012 in the South and Southwest Texas area. I use the analysis in tables 8 and 9 to determine which candidates minority voters preferred. I then calculate the percent of the two-party vote won by those candidates in general elections.

77. Candidates preferred by minorities in CD 23 fall short of a majority in the
election for U. S. President and U. S. Senate among the VTDs in CD 23 under Plan
C235. In the average election, the candidates preferred by minorities received only
47.4% of the vote. Across all six elections used to construct the average vote
(President 2008 and 2012, Senator 2008 and 2012, Governor 2010, and Attorney
General 2010), the minority preferred candidate won the majority of vote in only 2
of the 6 in the VTDs that comprise CD 23 under Plan C235. Those are the exogenous
elections. There has been one endogenous election under this map, in 2012. In that
election, the minority preferred candidate won 52.5% of the vote.

78. In the majority of elections examined, the minority preferred candidate did not
win a majority of votes in the VTDs in CD 23 under Plan C235.

4. Analysis of Nueces County and CD 27 under C100 and C235

79. The reconfiguration of CD 27 takes a substantial Hispanic population out of a
majority Hispanic CVAP CD under Plan C100 and places them into a plurality White
CD (27) under Plan C235.

80. CD 27 under Plan C235 contains Nueces County and part of San Patricio County.
Nueces County was entirely in CD 27 under Plan C100. Of the 340,223 persons in
this county, 206,293 (60.6%) are Hispanic. The portion of San Patricio County that
was in CD 27 under Plan C100 contained 37,264 persons, of which 15,025 (40.3%)

27
are Hispanic. The portion of San Patricio County that is in CD 27 under Plan C235 contains 44,379 persons, of which 20,151 (45.4%) are Hispanic.

81. Based solely on CVAP data, CD 27 in Plan C100 was majority Hispanic. Under Plan C100, 65.9% of CVAP in CD 27 was Hispanic. Hispanic preferred candidates held a slight edge in this district in statewide elections from 2008 to 2012. Under Plan C100, the Hispanic preferred candidate won the 2008 U. S. House election in CD 27 with 60.2% of the two-party vote. The Hispanic preferred candidate lost the 2010 U. S. House election in CD 27 with 49.6% of the two-party vote. In the VTDs in CD 27 under Plan C100, the Hispanic preferred candidates won 54.7% of the 2012 Presidential vote, 51.7% of the 2012 U. S. Senate vote, 50.2% of the 2010 Governor vote, 41.2% of the vote for Attorney General, and 53.7% of the 2008 Presidential vote.

82. CD 27 in Plan C235 is plurality White. In this district, 49.6% of the CVAP is White, and 48.8% is Black or Hispanic. It may be possible, with sufficient White cross over voting, to elect minority-preferred candidates in this district. However, the district does not function as an effective cross over district.

83. Looking at statewide elections in the VTDs in this district, the Hispanic preferred candidates won 38.7% of the 2012 Presidential vote, 39.2% of the 2012 U. S. Senate vote, 41.1% of the 2010 Governor vote; and 40.4% of the 2008 Presidential vote.
84. Racial groups in CD 27 under Plan C235 exhibit high levels of cohesion and
polarization in their voting. Using the Average Democratic Share of the Two-Party
Vote, ecological regression analysis estimates that 8.8 percent of Whites voted for
Hispanic Preferred candidates, 77.6 percent of Hispanics voted for those candidates,
and 93.6 percent of Blacks voted for those candidates.9 In the 2012 U. S. House
election, ecological regression estimates reveal that 7.1 percent of Whites, 79.6
percent of Hispanics, and 96.4 percent of Blacks voted for the Democratic candidate.

85. In sum, Plan C235 puts a substantial Hispanic population from Nueces and San
Patricio Counties that was in a majority Hispanic CD into a district that is majority
White. Both districts exhibit high levels of racial cohesion and polarization. And CD
27 under Plan C235 does not function as a cross over district.

5. Analysis of Travis County and CD 25 under C100

86. The Federal District Court in District of Columbia issued a decision in the
Section 5 case on August 28, 2012. That court found that CD 25 under Plan C100
was a functioning cross over district, and, thus, a minority opportunity district. The
VTDs from that district within Travis County were divided into 5 separate districts
under Plan C185 and is divided into those same districts under Plan C235. Th3e

9 AVERAGE DEM VOTE SHARE in VTD in CD 27 under C235
= .0881 + .8481 \% Black of VAP + .6881 * \% Hispanic of VAP; N=312, R2 = .852.
August 2012 decision was consistent with the analysis and evidence that I offered to the court.10

87. I will not repeat, other by reference, the evidence entered in that case regarding the representation of minorities in CD 25 under Plan C100. However, the reports filed there pointed to several factual conclusions about this district. (1) Whites are a majority of the district. (2) Blacks and Hispanics are cohesive and vote for the same candidates in general elections and usually vote for the same candidates in primary elections. (3) Whites are not highly cohesive, but a majority tends to vote against candidates preferred by Blacks and Hispanics in general elections. (4) The candidate preferred by Hispanics and Blacks in primary election voting won the primary elections for U. S. House in this district from 2006 to 2010.

88. Tables 7 and 8, and analyses provided in my earlier reports, show that the minority-preferred candidates won majorities of votes in exogenous and endogenous elections in CD 25 under Plan C100. That was true even when majorities of Whites voted for the opposing candidate. Typically, Whites voted just 42\% of the time for minority-preferred candidates in exogenous elections in this district, but that was sufficient cross over vote so that the minority-preferred candidates won the majority of the vote in the VTDs in CD 25 under Plan C100. Most

notably, in the 2010 U. S. House election in this district, the minority preferred candidate, Lloyd Doggett, won just 37% of the vote of Whites, but he still won the congressional election in this district.

89. Lloyd Doggett was also the candidate preferred by minorities in congressional primary elections in this area. There are few primaries in Congressional races in the area of Plan C100’s CD 25 and Travis County. In 2004 and 2012 there were contested primaries for U. S. House of Representative, both involving Congressman Lloyd Doggett. In 2004, Doggett ran against Leticia Hinojosa. In 2012 (in CD 35), he ran against two opponents, Sylvia Romo and Maria Luisa Alvarado. Lloyd Doggett won both primaries by a wide margin. He won 64.4% of all votes in the 2004 primary. He won 73.2% of all votes in the 2012 primary, and 91.9% of all votes in the VTDs that were in CD 25 under Plan C 100. Table 11 presents the estimated voting behavior of racial groups in the VTDs that were in CD 25 in primary elections. This does not encompass all VTDs that were in CD 25 under Plan C100, but those VTDs that were in that CD and either in CD 25 in 2004 or in CD 35 under Plan C235 in 2012. As demonstrated in Table 11, all racial groups preferred Doggett to the opposing candidates.

F. Analysis of the Division of Travis County and of CD 25 Under Plan C100

90. The Federal District Court in Western Texas issued a preliminary ruling in the San Antonio Case on March 19, 2012, regarding Plan C100’s CD 25 and the division
of Travis County. The court’s ruling stated that more evidence is required concerning the division of Travis County and of CD 25. (See Document 691, page 48.) Specifically, the court cites testimony from witnesses from the State of Texas asserting that the division of Plan C100’s CD 25 was primarily motivated to defeat Lloyd Doggett and for partisan rather than racial purposes. (See Document 691, page 44.)

91. No statistical evidence to this effect was provided by those witnesses or cited by the court. The court left open the possibility that such evidence might inform later decisions concerning this map. While that testimony concerned Plan C185, the division of Travis County and of Plan C100’s CD 25 in Plan C235 follows the boundaries for this area laid down in C185.

1. Targeting Lloyd Doggett

92. One motivation asserted as a rationale for the reconfiguration of districts in Travis County was to defeat Congressman Lloyd Doggett. Congressman Doggett represented CD 25 under Plan C100. The majority (60%) of the Voting Age Population in CD 25 under Plan C100 was in Travis County.

93. The plurality of Voting Age Persons from Plan C100’s CD 25 in Travis County ended up in CD 35. CD 35 under the interim map is identical to CD 35 in Plan C185.
94. In CD 25 under Plan C100, Lloyd Doggett received 52.8% of all votes cast in the 2010 Congressional general election for this district, 65.8% in 2008, and 67.3% in 2006.

95. In 2012, Lloyd Doggett ran in CD 35 under the interim map. Congressman Doggett won 64.0% of the vote in 2012 in CD 35. There is no statistical evidence that the redrawing of districts in Travis County had the effect of reducing the vote share received by Congressman Doggett, let alone defeating him.

96. The Texas State Legislature did not change the boundaries of CD 35 when it adopted C235 in 2013, after Lloyd Doggett had won election to this district.

2. Division of Racial Groups in Travis County

97. A question raised in the March 19, 2012, opinion of the Federal District Court in the Western District of Texas is whether the division of Travis County is primarily racial or partisan. I address this question two ways. First, I examine the division and racial composition of VTDs across Congressional Districts in Plans C100 and C235. Second, I consider how strongly racial composition and party vote predict which VTDs are in which districts.

(a) Maps
98. Maps 1 and 2 show the boundaries of Congressional Districts in Travis County under Plans C100 and C235, respectively. The maps are centered on the City of Austin. The gray-scale represents the percent Black non-Hispanic population in each Voting Tabulation District, with darker grays meaning higher percentage Black and lighter grays meaning higher percentage non-Black.\footnote{VTD 125 has 1 person. That person is Black, so that VTD shows up as 100% Black. Also VTD 432 has 4 persons, one of whom is Black.}

99. The highest concentration of Blacks is in Central and Eastern Travis County, with a significant portion of the population in East and Central parts of the City of Austin. The VTDs with the highest percentage Black VAP in this area are 101, 105, 114, 117, 118, 121, 122, 124, 126, 129, 132, 151, and 444. All of these VTDs were in CD 25 under Plan C100, except for VTD 105, which was in CD 10.

100. Plan C235 splits these VTDs across three districts. VTDs 105, 114, and 118 are in CD 10 under C235. VTDs 122, 124, 126, 129, 132, and 151 are in CD 25. VTDs 101, 117, 121, and 444 are in CD 35.

101. Three VTDs in northern Travis County have at least 20% Black VAP. These are VTDs 161, 148, and 216. All were in CD 10 under Plan C100. All three are put in CD 17 under Plan C235.

102. Maps 3 and 4 show the boundaries of Congressional Districts in Travis County under Plans C100 and C235, respectively. The gray-scale represents the percent
Hispanic population in each Voting Tabulation District, with darker grays meaning higher percentage Hispanic and lighter grays meaning higher percentage non-Hispanic. The Hispanic population is most highly concentrated in Southern and Eastern parts of the county and in the northern part of the City of Austin.

103. Much of the area of Travis County that is placed into CD 35 under C235 was in CD 25 under C100. Compare maps 3 and 4. Specifically, CD 25 under C100 contained the southern quarter of Travis County, and most of that area is put in CD 35 under Plan C235. The Hispanic population in the northern part of the City of Austin was contained in CD 10 under Plan C100; C235 also incorporates the VTDs from CD 10 with the highest percent Hispanic in CD 35.
Map 1: Travis County (Austin) by % Black VAP, Plan C100

Map 2: Travis County (Austin) by % Black VAP, Plan C235
(b) Correlation between District Boundaries and Race and Party in Travis County

104. The opinion of the Federal District Court in the Western District of Texas in its March 19, 2012 opinion left open the possibility of a demonstration that race is more important than party in C185’s and C235’s division of Travis County and of CD 25.

105. A simple way to address that question is to examine whether race or party are stronger correlates or predictors of which VTDs ended up in which CDs. If party is at least as important as race, then measures of party strength, especially voting strength, ought to correlate more strongly than race with which CD a VTD is in.

106. Table 12 presents the correlations between racial composition of a VTD and inclusion of that VTD into a given district in Travis County. Those correlations are on the top panel. The table also presents the correlations between inclusion of a VTD in a given CD and the party vote in that district in Travis County. Specifically, the measures of vote are the Percent of the Two-Party Vote (Democrat plus Republican) won by Democrats for President in 2008, Governor in 2010, and President in 2012, and the Average Percent of the Two-Party Vote won by Democrats in six elections (President 2008, U.S. Senate 2008, Governor 2010, Attorney General 2010, President 2012 and U. S. Senate 2012).
107. The stars in the table indicate statistically significant values. Entries with one star are significantly different from zero with probability less than .05; entries with two stars are significantly different from zero with probability less than .01. Lower probability values mean that I am more certain that the observed correlation is different from zero.

108. The racial indicators are statistically significantly correlated with inclusion of VTDs in specific CDs. Only for CD 10 is there no statistically significant correlation between the racial composition of the VTD and the likelihood that it is included in a given VTD. That is, with the exception of CD 10, racial factors are significant predictors of which VTDs end up in which CDs in Travis County.

109. The party vote indicators are also correlated with the indicators of whether a VTD is included in specific districts for 2 (possibly 3) of the 5 CDs. None of the party vote indicators is related to (or predictive of) whether a VTD is included CDs 10 or 21. Only one of the vote measures (Governor 2010) is correlated with inclusion in CD 17, and that correlation is quite weak. Party vote is consistently and significantly related to inclusion in CDs 35 and 25.

110. Comparing the top and bottom panels reveals that race is a stronger predictor than party vote of which VTDs are put in which CDs. For CD 35, the correlations are .73 and -.60 for Percent Hispanic VAP and Percent Anglo VAP, respectively. The party vote correlations range from .35 to .40, only about half as strong as the racial
correlations. For CD 25, the correlations are .34 and -.38 for Percent Hispanic VAP and Percent Anglo VAP. The correlations for party vote range from .20 to .27. None of the correlations is significant for CD 10. For CD 21, the correlations are .21 and -.24 for Percent Anglo VAP and Percent Black VAP, respectively. The party vote correlations range from .06 to .09, and none is significant. For CD 17, there is a significant correlation between Percent Black VAP of .19, and a significant correlation between percent Democrat for Governor in 2010 of -.15.

111. Race, then, is a stronger correlate and predictor than party vote of which VTDs are placed in which CDs in Travis County under Plan C235. When the correlations are significant, the racial correlations are twice as strong as the party vote correlations among the VTDs. See, in particular, the correlations for CDs 21, 25, and 35.

112. Table 13 restricts the correlation analysis further. Specifically, the analysis is of only VTDs in Travis that were in CD 25 under Plan C100. Looking at this subset, the correlations of the racial variables are even stronger than for the county as a whole. In other words, race is an even stronger predictor of which Travis County VTDs ended up in which CDs when we restrict the subset of VTDs only to those that were in CD 25 under Plan C100. The same is not true of the party indicators. The party vote variables are less strongly correlated and weaker predictors than the racial variables of which VTDs ended up in which CDs among the subset of VTDs that were in CD 25 under Plan C235.
3. Division of Racial Groups in Plan C100’s CD 25

113. Looking at the district level rather than the county level, it is evident that Plan C235 divides CD 25 under Plan C100 more along racial lines than party lines. Consider all VTDs that were in CD 25 under Plan C100 and the division of those VTDs into new CDs under Plan C235. Specifically, I create an indicator of which CD a given VTD is placed in under Plan C235 and correlate the racial composition of and party vote of the VTDs with the indicators of the CDs in which VTD is included under Plan C235. Table 14 presents correlations between White VAP, Black VAP, and Hispanic VAP and indicators of which CD a given VTD is in under Plan C235. The table also presents the correlation between the Democrat’s Percent of the Average Two-Party Vote and indicators of which CD a given VTD is in under Plan C235.

114. The racial variables are highly predictive of which VTDs that were in CD 25 under Plan C100 end up in CDs 25 and 35, and show significant correlations for CDs 10 and 21. The racial composition of the VTDs is not predictive of which of Plan C100’s CD 25’s VTDs ended up in CDs 27 or 34 under Plan C235. Note, none of the VTDs that ended up in CDs 27 or 34 under Plan C235 were Travis County VTDs.

115. Party vote is also correlated which VTDs that were in CD 25 under Plan C100 end up in particular CDs under Plan C235.
116. The party correlations are, on the whole, weaker than the racial correlations. Specifically, the racial correlations are at least twice as large as the party vote correlations for CDs 21, 25, and 35 under Plan C235, and they are about the same as each other for CD 10. For CD 27 the party vote correlations are stronger than the racial correlations, and all the correlations are quite weak for CD 34. As noted above, all of the VTDs in Plan C235’s CD 27 and CD 34 lie outside of Travis County. None of the party vote correlations is as strong as the racial correlations for CD 25 and CD 35 under Plan C235.

117. Based on this pattern of correlations, race was a stronger predictor than party in the determining which VTDs in Travis County ended up in which CDs under Plan C235 and which VTDs in Plan C100’s version of CD 25 ended up in which CDs under Plan C235.
Table 1. 2000 and 2010 Texas Population, Voting Age Population, and Citizen Voting Age Population

<table>
<thead>
<tr>
<th></th>
<th>Total Population</th>
<th>Voting Age Population</th>
<th>Citizen Voting Age Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2010</td>
<td>2000</td>
</tr>
<tr>
<td>All People</td>
<td>20,851,820</td>
<td>25,145,561</td>
<td>14,977,890</td>
</tr>
<tr>
<td>White Alone</td>
<td>10,933,313</td>
<td>11,397,345</td>
<td>8,423,235</td>
</tr>
<tr>
<td>Hispanic</td>
<td>6,669,666</td>
<td>9,460,921</td>
<td>4,287,444</td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>2,493,057</td>
<td>3,075,696</td>
<td>1,683,430</td>
</tr>
</tbody>
</table>

Note: Total Population and Voting Age Population are from the 2000 and 2010 Census Enumeration. Citizen Voting Age Population for 2000 is from the Census Long Form survey in that year; Citizen Voting Age Population for 2010 is from the American Community Survey 2008-2012, with 2010 as the mid-year.

<table>
<thead>
<tr>
<th>County</th>
<th>Year</th>
<th>Total</th>
<th>White</th>
<th>Hispanic</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris</td>
<td>2008</td>
<td>2,230,550</td>
<td>1,051,265</td>
<td>530,490</td>
<td>508,540</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>2,328,000</td>
<td>1,054,485</td>
<td>590,280</td>
<td>530,755</td>
</tr>
<tr>
<td></td>
<td>% Growth</td>
<td>4.4%</td>
<td>0.3%</td>
<td>11.3%</td>
<td>4.4%</td>
</tr>
<tr>
<td>Dallas</td>
<td>2008</td>
<td>1,321,135</td>
<td>657,305</td>
<td>250,680</td>
<td>345,630</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1,360,390</td>
<td>649,069</td>
<td>277,395</td>
<td>359,125</td>
</tr>
<tr>
<td></td>
<td>% Growth</td>
<td>3.0%</td>
<td>-1.3%</td>
<td>10.7%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Tarrant</td>
<td>2008</td>
<td>1,093,044</td>
<td>717,280</td>
<td>156,765</td>
<td>164,245</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1,141,750</td>
<td>730,125</td>
<td>176,280</td>
<td>175,795</td>
</tr>
<tr>
<td></td>
<td>% Growth</td>
<td>4.5%</td>
<td>1.8%</td>
<td>12.4%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Bexar</td>
<td>2008</td>
<td>1,082,495</td>
<td>412,845</td>
<td>560,100</td>
<td>82,750</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>1,135,610</td>
<td>420,345</td>
<td>593,520</td>
<td>89,240</td>
</tr>
<tr>
<td></td>
<td>% Growth</td>
<td>4.9%</td>
<td>1.8%</td>
<td>6.0%</td>
<td>7.8%</td>
</tr>
<tr>
<td>Travis</td>
<td>2008</td>
<td>629,720</td>
<td>406,805</td>
<td>129,195</td>
<td>57,825</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>666,065</td>
<td>424,600</td>
<td>140,200</td>
<td>61,390</td>
</tr>
<tr>
<td></td>
<td>% Growth</td>
<td>5.8%</td>
<td>4.4%</td>
<td>8.5%</td>
<td>6.2%</td>
</tr>
<tr>
<td>El Paso</td>
<td>2008</td>
<td>425,970</td>
<td>83,295</td>
<td>320,195</td>
<td>14,715</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>450,700</td>
<td>85,030</td>
<td>340,530</td>
<td>16,350</td>
</tr>
<tr>
<td></td>
<td>% Growth</td>
<td>5.8%</td>
<td>2.1%</td>
<td>6.4%</td>
<td>11.1%</td>
</tr>
<tr>
<td>State of Texas</td>
<td>2008</td>
<td>15,276,965</td>
<td>8,820,810</td>
<td>3,889,570</td>
<td>1,973,520</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>15,891,110</td>
<td>8,965,260</td>
<td>4,209,595</td>
<td>2,057,170</td>
</tr>
<tr>
<td></td>
<td>% Growth</td>
<td>4.0%</td>
<td>1.6%</td>
<td>8.2%</td>
<td>4.2%</td>
</tr>
</tbody>
</table>
Table 3. Total Number of and Types of Minority Opportunity Districts under Plans C100, C220, and C235

<table>
<thead>
<tr>
<th></th>
<th>Plan C100 (2006-2011 Districts)</th>
<th>Plan C220 (Court Drawn Interim Map)</th>
<th>Plan C235 (2012-present)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of CDs (CD Numbers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Majority Hispanic CVAP</td>
<td>7 (15, 16, 20, 23, 27, 28, 29)</td>
<td>8 (15, 16, 20, 23, 27, 28, 29, 35)</td>
<td>7 or 8 (15, 16, 20, 28, 29, 34, 35; 23 is in question)</td>
</tr>
<tr>
<td>Majority Black CVAP</td>
<td>1 (30)</td>
<td>1 (30)</td>
<td>2 (9, 30)</td>
</tr>
<tr>
<td>Majority Black + Hispanic CVAP</td>
<td>2 (9, 18)</td>
<td>3 (9, 18, 33)</td>
<td>2 (18, 33)</td>
</tr>
<tr>
<td>Cross Over</td>
<td>1 (25)</td>
<td>1 (25)</td>
<td>0</td>
</tr>
<tr>
<td>Total Number of CDs in State</td>
<td>32</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 4. Population of VTDs in Majority Hispanic CDs in Either Plan C100 or Plan C235

<table>
<thead>
<tr>
<th></th>
<th>VTDs in Majority Hispanic CDs in Either C100 or C235</th>
<th>VTDs in Majority Hispanic CDs in Either C100 or C235 Plus Plan C100’s CD 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population</td>
<td>5,303,855</td>
<td>5,832,330</td>
</tr>
<tr>
<td>Number of Potential CDs</td>
<td>7.59</td>
<td>8.35</td>
</tr>
<tr>
<td>(Population/698,488)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Voting Age</td>
<td>3,723,489</td>
<td>4,134,056</td>
</tr>
<tr>
<td>Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hispanic Voting</td>
<td>2,577,930</td>
<td>2,673,048</td>
</tr>
<tr>
<td>Age Population</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. CVAP by Racial Group in Congressional Districts in C100, C220, and C235

<table>
<thead>
<tr>
<th>CD #</th>
<th>Hispanic CVAP</th>
<th>Black* CVAP</th>
<th>White Alone CVAP</th>
<th>Hispanic CVAP</th>
<th>Black CVAP</th>
<th>White Alone CVAP</th>
<th>Hispanic CVAP</th>
<th>Black CVAP</th>
<th>White Alone CVAP</th>
<th>Hispanic CVAP</th>
<th>Black CVAP</th>
<th>White Alone CVAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.4</td>
<td>18.7</td>
<td>73.4</td>
<td>6.5</td>
<td>18.8</td>
<td>73.2</td>
<td>6.5</td>
<td>18.8</td>
<td>73.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14.3</td>
<td>22.9</td>
<td>59.2</td>
<td>17.8</td>
<td>14.8</td>
<td>61.1</td>
<td>19.1</td>
<td>10.5</td>
<td>63.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12.2</td>
<td>11.8</td>
<td>64.8</td>
<td>8.7</td>
<td>8.8</td>
<td>72.5</td>
<td>8.7</td>
<td>8.7</td>
<td>72.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.6</td>
<td>10.7</td>
<td>79.7</td>
<td>5.9</td>
<td>11.1</td>
<td>80.7</td>
<td>5.8</td>
<td>11.1</td>
<td>80.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11.0</td>
<td>14.5</td>
<td>71.5</td>
<td>12.0</td>
<td>14.7</td>
<td>70.6</td>
<td>12.2</td>
<td>15.2</td>
<td>70.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13.0</td>
<td>17.0</td>
<td>65.4</td>
<td>26.5</td>
<td>15.7</td>
<td>54.8</td>
<td>13.3</td>
<td>18.1</td>
<td>63.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16.7</td>
<td>10.9</td>
<td>63.7</td>
<td>16.7</td>
<td>11.3</td>
<td>63.5</td>
<td>17.6</td>
<td>12.7</td>
<td>61.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8.0</td>
<td>8.3</td>
<td>81.5</td>
<td>9.9</td>
<td>9.5</td>
<td>78.4</td>
<td>10.5</td>
<td>9.4</td>
<td>77.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>21.7</td>
<td>48.8</td>
<td>18.2</td>
<td>21.3</td>
<td>49.2</td>
<td>17.9</td>
<td>20.3</td>
<td>50.2</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17.7</td>
<td>12.3</td>
<td>64.4</td>
<td>15.1</td>
<td>9.2</td>
<td>69.1</td>
<td>15.6</td>
<td>11.4</td>
<td>69.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>27.5</td>
<td>4.2</td>
<td>66.7</td>
<td>24.9</td>
<td>3.9</td>
<td>69.4</td>
<td>24.8</td>
<td>3.9</td>
<td>69.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>17.0</td>
<td>7.3</td>
<td>71.9</td>
<td>12.3</td>
<td>7.7</td>
<td>76.0</td>
<td>12.8</td>
<td>8.2</td>
<td>75.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>15.6</td>
<td>6.3</td>
<td>75.8</td>
<td>15.6</td>
<td>5.7</td>
<td>76.4</td>
<td>15.7</td>
<td>5.7</td>
<td>76.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>21.8</td>
<td>10.1</td>
<td>64.9</td>
<td>14.6</td>
<td>20.2</td>
<td>61.4</td>
<td>14.7</td>
<td>21.7</td>
<td>60.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>74.4</td>
<td>2.2</td>
<td>22.4</td>
<td>76.1</td>
<td>1.7</td>
<td>21.1</td>
<td>71.6</td>
<td>2.4</td>
<td>24.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>75.0</td>
<td>3.7</td>
<td>19.2</td>
<td>76.9</td>
<td>3.2</td>
<td>17.9</td>
<td>73.4</td>
<td>4.0</td>
<td>20.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>12.7</td>
<td>10.0</td>
<td>75.2</td>
<td>13.3</td>
<td>10.8</td>
<td>73.7</td>
<td>15.2</td>
<td>13.7</td>
<td>67.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>24.3</td>
<td>46.7</td>
<td>24.5</td>
<td>23.9</td>
<td>47.2</td>
<td>24.4</td>
<td>21.5</td>
<td>49.4</td>
<td>24.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>26.1</td>
<td>5.6</td>
<td>66.3</td>
<td>26.7</td>
<td>6.3</td>
<td>65.0</td>
<td>26.5</td>
<td>6.3</td>
<td>65.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>64.7</td>
<td>8.2</td>
<td>24.8</td>
<td>59.3</td>
<td>7.7</td>
<td>30.8</td>
<td>62.6</td>
<td>5.3</td>
<td>29.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>23.0</td>
<td>6.5</td>
<td>66.6</td>
<td>19.1</td>
<td>2.6</td>
<td>74.9</td>
<td>21.3</td>
<td>3.2</td>
<td>72.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>20.0</td>
<td>14.9</td>
<td>53.3</td>
<td>17.8</td>
<td>16.1</td>
<td>52.0</td>
<td>19.1</td>
<td>13.3</td>
<td>53.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>59.6</td>
<td>3.6</td>
<td>34.3</td>
<td>58.7</td>
<td>5.0</td>
<td>33.9</td>
<td>61.3</td>
<td>3.7</td>
<td>33.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>16.7</td>
<td>15.7</td>
<td>59.6</td>
<td>12.3</td>
<td>9.5</td>
<td>70.4</td>
<td>13.1</td>
<td>11.0</td>
<td>67.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26.4</td>
<td>8.7</td>
<td>62.0</td>
<td>24.3</td>
<td>9.6</td>
<td>61.4</td>
<td>11.8</td>
<td>7.5</td>
<td>77.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>11.0</td>
<td>14.3</td>
<td>70.7</td>
<td>10.4</td>
<td>7.4</td>
<td>77.1</td>
<td>10.2</td>
<td>7.1</td>
<td>77.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>65.9</td>
<td>2.5</td>
<td>30.1</td>
<td>74.2</td>
<td>2.2</td>
<td>22.5</td>
<td>43.0</td>
<td>5.6</td>
<td>49.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>69.9</td>
<td>1.9</td>
<td>27.1</td>
<td>75.1</td>
<td>1.6</td>
<td>22.4</td>
<td>67.1</td>
<td>5.5</td>
<td>25.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>59.0</td>
<td>15.1</td>
<td>24.0</td>
<td>58.5</td>
<td>15.6</td>
<td>23.9</td>
<td>60.1</td>
<td>14.9</td>
<td>22.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>20.0</td>
<td>52.2</td>
<td>25.5</td>
<td>19.4</td>
<td>52.5</td>
<td>25.7</td>
<td>18.5</td>
<td>54.1</td>
<td>24.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>16.1</td>
<td>12.7</td>
<td>67.0</td>
<td>16.3</td>
<td>13.9</td>
<td>66.0</td>
<td>16.7</td>
<td>11.6</td>
<td>67.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>21.6</td>
<td>9.5</td>
<td>63.9</td>
<td>13.3</td>
<td>12.6</td>
<td>66.6</td>
<td>14.4</td>
<td>12.2</td>
<td>66.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>22.8</td>
<td>30.5</td>
<td>40.9</td>
<td>41.4</td>
<td>25.0</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>25.4</td>
<td>8.4</td>
<td>63.5</td>
<td>74.6</td>
<td>1.9</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>53.0</td>
<td>9.0</td>
<td>36.9</td>
<td>52.1</td>
<td>11.5</td>
<td>33.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>15.0</td>
<td>10.4</td>
<td>70.7</td>
<td>12.8</td>
<td>10.2</td>
<td>74.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Black Alone plus Black and White plus Black and American Indian.
<table>
<thead>
<tr>
<th></th>
<th>Democrat’s Share of Two Party Vote in Each Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>100.0% (98.6, 100.0)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>75.9% (74.9, 76.9)</td>
</tr>
<tr>
<td>White</td>
<td>10.4% (9.9, 10.9)</td>
</tr>
<tr>
<td>N</td>
<td>8606</td>
</tr>
<tr>
<td>R-Square</td>
<td>.798</td>
</tr>
</tbody>
</table>
Table 7. RACIAL VOTING PATTERNS IN NON-CONGRESSIONAL (EXOGENOUS) ELECTIONS IN MINORITY OPPORTUNITY DISTRICTS
Ecological Regression Estimates of the Percent of the 2-Party Vote Won by Democratic Candidates Among Whites, Hispanics, and Blacks in CDs in South and Southwest Texas under Plan C100 and Plan C235

<table>
<thead>
<tr>
<th></th>
<th>PLAN C100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Democrat Share of 2 Party Vote Among Each Group</td>
</tr>
<tr>
<td></td>
<td>Blacks Hispanic White</td>
</tr>
<tr>
<td>CD 15</td>
<td>36.8% (17.6, 56.0) 80.0% (75.5, 84.5) 0.0% (0.0, 3.8)</td>
</tr>
<tr>
<td>CD 16</td>
<td>93.1% (68.0, 100.0) 82.6% (74.8, 90.4) 0.0% (0.0, 7.2)</td>
</tr>
<tr>
<td>CD 20</td>
<td>90.3% (78.4, 100.0) 81.9% (77.3, 86.5) 16.9% (13.1, 20.7)</td>
</tr>
<tr>
<td>CD 23</td>
<td>100.0% (82.6, 100.0) 79.2% (75.8, 82.6) 7.1% (4.6, 9.6)</td>
</tr>
<tr>
<td>CD 25</td>
<td>100.0% (77.4, 100.0) 82.8% (72.5, 93.1) 41.6% (37.7, 45.5)</td>
</tr>
<tr>
<td>CD 27</td>
<td>100.0% (+/- 22.5) 79.1% (75.8, 82.4) 5.2% (2.6, 7.8)</td>
</tr>
<tr>
<td>CD 28</td>
<td>79.5% (50.2, 100.0) 79.9% (76.5, 83.4) 3.2% (0.2, 6.2)</td>
</tr>
</tbody>
</table>

	PLAN C235					
	CD 15	46.2% (+/- 21.2)	79.7% (+/- 3.6)	6.3% (+/- 3.1)	292	.871
	CD 16	100.0% (+/- 35.8)	81.7% (+/- 8.2)	0.0% (+/- 7.4)	168	.778
	CD 20	83.5% (+/- 22.2)	81.1% (+/- 3.9)	16.5% (+/- 3.5)	230	.862
	CD 23	100.0% (+/- 16.0)	89.8% (+/- 3.7)	1.1% (+/- 2.8)	302	.857
	CD 28	100.0% (+/- 11.2)	81.5% (+/- 3.7)	4.8% (+/- 3.2)	254	.876
	CD 34	49.6% (+/- 25.6)	80.2 (+/- 5.2)	0.0% (+/- 5.2)	242	.830
	CD 35	100.0% (+/- 13.4)	86.1% (+/- 7.3)	20.6% (+/- 5.0)	219	.644

Table 8. RACIAL VOTING PATTERNS IN U. S. HOUSE (ENDOGENOUS) ELECTIONS IN MINORITY OPPORTUNITY DISTRICTS
Ecological Regression Estimates of the Percent of the 2-Party Vote Won by Democratic Candidates Among Whites, Hispanics, and Blacks in CDs in South and Southwest Texas under Plan C100 (Estimate and confidence interval (in parentheses))

<table>
<thead>
<tr>
<th>District</th>
<th>White</th>
<th>Hispanic</th>
<th>Black</th>
<th>White</th>
<th>Hispanic</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008</td>
<td></td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD 15</td>
<td>16.4%</td>
<td>83.0%</td>
<td>71.5%</td>
<td>0.0%</td>
<td>77.4%</td>
<td>34.1%</td>
</tr>
<tr>
<td></td>
<td>(13.0, 19.8)</td>
<td>(78.7, 87.3)</td>
<td>(44.1, 98.9)</td>
<td>(0.0, 4.6)</td>
<td>(71.6, 83.2)</td>
<td>(0.0, 72.0)</td>
</tr>
<tr>
<td>CD 16</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0.0%</td>
<td>79.4%</td>
<td>54.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0, 5.6)</td>
<td>(75.8, 86.0)</td>
<td>(21.0, 87.7)</td>
</tr>
<tr>
<td>CD 20</td>
<td>30.5%</td>
<td>89.7%</td>
<td>84.7%</td>
<td>8.5%</td>
<td>86.8%</td>
<td>69.0%</td>
</tr>
<tr>
<td></td>
<td>(27.0, 34.0)</td>
<td>(85.3, 94.1)</td>
<td>(74.4, 95.0)</td>
<td>(3.4, 13.6)</td>
<td>(80.3, 92.3)</td>
<td>(53.4, 84.6)</td>
</tr>
<tr>
<td>CD 23</td>
<td>10.4%</td>
<td>88.5%</td>
<td>85.5%</td>
<td>1.4%</td>
<td>82.2%</td>
<td>72.1%</td>
</tr>
<tr>
<td></td>
<td>(8.6, 12.2)</td>
<td>(86.8, 90.2)</td>
<td>(79.8, 100.0)</td>
<td>(0.0, 3.6)</td>
<td>(78.9, 85.5)</td>
<td>(52.0, 92.2)</td>
</tr>
<tr>
<td>CD 25</td>
<td>53.1%</td>
<td>92.9%</td>
<td>100.0%</td>
<td>37.4%</td>
<td>84.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>(50.2, 56.0)</td>
<td>(83.6, 100.0)</td>
<td>(80.4, 100.0)</td>
<td>(33.3, 41.5)</td>
<td>(70.8, 98.4)</td>
<td>(70.2, 100.0)</td>
</tr>
<tr>
<td>CD 27</td>
<td>14.0%</td>
<td>83.6%</td>
<td>100.0%</td>
<td>1.7%</td>
<td>79.1%</td>
<td>99.4%</td>
</tr>
<tr>
<td></td>
<td>(11.9, 16.1)</td>
<td>(80.8, 86.4)</td>
<td>(76.8, 100.)</td>
<td>(0.0, 4.4)</td>
<td>(75.3, 82.9)</td>
<td>(65.1, 100.0)</td>
</tr>
<tr>
<td>CD 28</td>
<td>27.6%</td>
<td>91.5%</td>
<td>35.3%</td>
<td>0.0%</td>
<td>87.8%</td>
<td>71.0%</td>
</tr>
<tr>
<td></td>
<td>(25.3, 29.9)</td>
<td>(88.8, 93.8)</td>
<td>(11.7, 57.9)</td>
<td>(0.0, 2.8)</td>
<td>(84.3, 91.2)</td>
<td>(42.2, 100.0)</td>
</tr>
</tbody>
</table>

* No Republican Candidate.
<table>
<thead>
<tr>
<th>CD</th>
<th>White (Estimate and confidence interval)</th>
<th>Hispanic (Estimate and confidence interval)</th>
<th>Black (Estimate and confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.0% (0.0, 2.6)</td>
<td>86.6% (83.4, 89.8)</td>
<td>100.0% (77.8, 100.0)</td>
</tr>
<tr>
<td>16</td>
<td>25.9% (21.0, 30.7)</td>
<td>77.8% (72.2, 83.4)</td>
<td>66.1% (39.7, 92.5)</td>
</tr>
<tr>
<td>20</td>
<td>22.1% (19.5, 24.7)</td>
<td>89.1% (85.9, 92.3)</td>
<td>70.7% (52.1, 89.3)</td>
</tr>
<tr>
<td>23</td>
<td>5.8% (3.6, 8.0)</td>
<td>81.8% (78.4, 85.1)</td>
<td>100.0% (83.5, 100.0)</td>
</tr>
<tr>
<td>28</td>
<td>8.6% (6.4, 10.8)</td>
<td>92.7% (89.9, 93.5)</td>
<td>100.0% (91.8, 100.0)</td>
</tr>
<tr>
<td>34</td>
<td>0.0% (0.0, 3.7)</td>
<td>84.1% (79.6, 88.6)</td>
<td>40.0% (10.0, 70.0)</td>
</tr>
<tr>
<td>35</td>
<td>19.6% (14.6, 23.6)</td>
<td>91.7% (83.8, 98.7)</td>
<td>100.0% (85.6, 100.0)</td>
</tr>
</tbody>
</table>
Table 10. Percent of Two-Party Vote for Minority Preferred Candidates Under Plan C235

<table>
<thead>
<tr>
<th></th>
<th>President 2012</th>
<th>US Senate 2012</th>
<th>US House 2012</th>
<th>Average 2008-2012*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD15</td>
<td>58.0%</td>
<td>56.1%</td>
<td>62.3%</td>
<td>56.3%</td>
</tr>
<tr>
<td>CD16</td>
<td>65.0%</td>
<td>61.7%</td>
<td>66.5%</td>
<td>62.6%</td>
</tr>
<tr>
<td>CD20</td>
<td>59.8%</td>
<td>59.4%</td>
<td>65.6%</td>
<td>57.0%</td>
</tr>
<tr>
<td>CD23</td>
<td>48.6%</td>
<td>46.7%</td>
<td>52.5%</td>
<td>47.4%</td>
</tr>
<tr>
<td>CD28</td>
<td>60.9%</td>
<td>56.9%</td>
<td>69.5%</td>
<td>58.6%</td>
</tr>
<tr>
<td>CD34</td>
<td>61.3%</td>
<td>57.0%</td>
<td>63.1%</td>
<td>58.3%</td>
</tr>
<tr>
<td>CD35</td>
<td>64.5%</td>
<td>64.2%</td>
<td>66.6%</td>
<td>62.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2004 U. S. House Primary</th>
<th>2012 U. S. House Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>97.1%</td>
<td>90.9%</td>
</tr>
<tr>
<td></td>
<td>(93.7, 100.0)</td>
<td>(88.7, 93.0)</td>
</tr>
<tr>
<td>Black</td>
<td>79.6%</td>
<td>99.0%</td>
</tr>
<tr>
<td></td>
<td>(70.0, 89.2)</td>
<td>(85.8, 100.0)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>66.7%</td>
<td>91.3%</td>
</tr>
<tr>
<td></td>
<td>(59.7, 73.7)</td>
<td>(83.7, 97.9)</td>
</tr>
<tr>
<td>Number of VTDs</td>
<td>85</td>
<td>68</td>
</tr>
<tr>
<td>R-Square</td>
<td>.525</td>
<td>.025</td>
</tr>
</tbody>
</table>
Table 12. Correlations between Racial and Partisan Variables and Whether a Voting Tabulation District in Travis County is included in a Given CD under Plan C235

<table>
<thead>
<tr>
<th>Racial Variables</th>
<th>Into CD 35</th>
<th>Into CD 25</th>
<th>Into CD 21</th>
<th>Into CD 17</th>
<th>Into CD 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Anglo VAP</td>
<td>-.604**</td>
<td>+.340**</td>
<td>+.205**</td>
<td>-.064</td>
<td>+.082</td>
</tr>
<tr>
<td>% Hispanic VAP</td>
<td>+.730**</td>
<td>-.377**</td>
<td>-.123</td>
<td>-.099</td>
<td>-.111</td>
</tr>
<tr>
<td>% Black VAP</td>
<td>+.166**</td>
<td>-.046</td>
<td>-.244**</td>
<td>+.187**</td>
<td>-.026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Party Variables</th>
<th>Into CD 35</th>
<th>Into CD 25</th>
<th>Into CD 21</th>
<th>Into CD 17</th>
<th>Into CD 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Dem for President 2008</td>
<td>+.366**</td>
<td>-.220**</td>
<td>+.083</td>
<td>-.115</td>
<td>-.108</td>
</tr>
<tr>
<td>% Dem for Governor 2010</td>
<td>+.346**</td>
<td>-.201**</td>
<td>+.093</td>
<td>-.154*</td>
<td>-.088</td>
</tr>
<tr>
<td>% Dem for President 2012</td>
<td>+.398**</td>
<td>-.271**</td>
<td>+.057</td>
<td>-.080</td>
<td>-.090</td>
</tr>
<tr>
<td>Average % Democrat 2008-2012</td>
<td>+.374**</td>
<td>-.229**</td>
<td>+.076</td>
<td>-.119</td>
<td>-.098</td>
</tr>
</tbody>
</table>

Note: Correlations are across Voting Tabulation Districts, weighted by total Voting Age Population in each VTD. Average % Democrat uses President, Senate, and Governor vote shares for 2008, 2010, and 2011.

*Statistically different from 0 at p<.05. Threshold: r = +/- .127
**Statistically different from 0 at p<.01. Threshold: r = +/- .165
N = 237
Table 13. Correlations between Racial and Partisan Variables and Whether a Voting Tabulation District in CD 25 under Plan C100 within Travis County is included in a Given CD under Plan C235

<table>
<thead>
<tr>
<th>RACIAL VARIABLES</th>
<th>Into CD 35</th>
<th>Into CD 25</th>
<th>Into CD 21</th>
<th>Into CD 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Anglo VAP</td>
<td>-.682**</td>
<td>+.283**</td>
<td>+.411**</td>
<td>+.035</td>
</tr>
<tr>
<td>% Hispanic VAP</td>
<td>+.782**</td>
<td>-.477**</td>
<td>-.326**</td>
<td>-.050</td>
</tr>
<tr>
<td>% Black VAP</td>
<td>+.139</td>
<td>+.202*</td>
<td>-.325**</td>
<td>-.008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTY VARIABLES</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% Dem for President 2008</td>
<td>+.241*</td>
<td>-.180</td>
<td>-.112</td>
<td>+.117</td>
</tr>
<tr>
<td>% Dem for Governor 2010</td>
<td>+.206*</td>
<td>-.158</td>
<td>-.119</td>
<td>+.154</td>
</tr>
<tr>
<td>% Dem for President 2012</td>
<td>+.303**</td>
<td>-.203*</td>
<td>-.158</td>
<td>+.111</td>
</tr>
<tr>
<td>Average % Democrat 2008-2012</td>
<td>+.250**</td>
<td>-.178</td>
<td>-.135</td>
<td>+.131</td>
</tr>
</tbody>
</table>

Note: Correlations are across Voting Tabulation Districts, weighted by total Voting Age Population in each VTD. Party Variables are percentages of the 2-Party Vote for each office. Racial Variables are White Only, Black Non-Hispanic, and Hispanic VAP. Average % Democrat uses President, Senate, and Governor vote shares for 2008, 2010, and 2012.

*Statistically different from 0 at p<.05. Threshold: r = +/- .187

**Statistically different from 0 at p<.01. Threshold: r = +/- .243

N = 106
Table 14. Correlations between Racial and Partisan Variables and Whether a Voting Tabulation District in CD 25 under Plan C100 is included in a Given CD under Plan C235

<table>
<thead>
<tr>
<th></th>
<th>Into CD 10</th>
<th>Into CD 21</th>
<th>Into CD 25</th>
<th>Into CD 27</th>
<th>Into CD 34</th>
<th>Into CD 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Anglo VAP</td>
<td>+.191**</td>
<td>+.256**</td>
<td>+.259**</td>
<td>+.108</td>
<td>-.012</td>
<td>-.646**</td>
</tr>
<tr>
<td>% Hispanic VAP</td>
<td>-.216**</td>
<td>-.221**</td>
<td>-.404**</td>
<td>-.077</td>
<td>+.046</td>
<td>+.729**</td>
</tr>
<tr>
<td>% Black VAP</td>
<td>+0.034</td>
<td>-.238*</td>
<td>+.128</td>
<td>-.030</td>
<td>-.046</td>
<td>+.115*</td>
</tr>
<tr>
<td>Average % Democrat 2008-2012</td>
<td>-.285**</td>
<td>+.130*</td>
<td>+.009</td>
<td>-.382**</td>
<td>-.115*</td>
<td>+.314**</td>
</tr>
</tbody>
</table>

Note: Correlations are across Voting Tabulation Districts, weighted by total Voting Age Population in each VTD. Party Variables are percentages of the 2-Party Vote for each office. Racial Variables are White Only, Black Non-Hispanic, and Hispanic VAP. Average % Democrat uses President, Senate, and Governor vote shares for 2008, 2010, and 2012.

*Statistically different from 0 at p<.05. Threshold: r = +/-.10
**Statistically different from 0 at p<.01. Threshold: r = +/-.15
N = 275
Stephen Ansolabehere

February 26, 2014

Cambridge, Massachusetts
STEPHEN DANIEL ANSOLABEHERE

Department of Government
Harvard University
1737 Cambridge Street
Cambridge, MA 02138
sda@gov.harvard.edu

EDUCATION

Harvard University

Ph.D., Political Science
1989

University of Minnesota

B.A., Political Science
1984
B.S., Economics

PROFESSIONAL EXPERIENCE

ACADEMIC POSITIONS

2008-present Professor, Department of Government, Harvard University
1998-2009 Elting Morison Professor, Department of Political Science, MIT
(Associate Head, 2001-2005)
1995-1998 Associate Professor, Department of Political Science, MIT
1993-1994 National Fellow, The Hoover Institution
1989-1993 Assistant Professor, Department of Political Science, University of California, Los Angeles

FELLOWSHIPS AND HONORS

American Academy of Arts and Sciences 2007
Carnegie Scholar 2000-02
Goldsmith Book Prize for Going Negative 1996
National Fellow, The Hoover Institution 1993-94
Harry S. Truman Fellowship 1982-86
PUBLICATIONS

Books

2014

2011

2008

1996
Going Negative: How Political Advertising Divides and Shrinks the American Electorate (with Shanto Iyengar). The Free Press.

1993

Recent Articles in Refereed Journals

2013
“Race, Gender, Age, and Voting” *Politics and Governance*, vol. 1, issue 2. (with Eitan Hersh)

2013

2013
“Cooperative Survey Research” *Annual Review of Political Science* (with Douglas Rivers)

2013
“Social Sciences and the Alternative Energy Future” *Daedalus* (with Bob Fri)

2013
“The Effects of Redistricting on Incumbents,” *Election Law Journal* (with James Snyder)

2013
“Does Survey Mode Still Matter?” *Political Analysis* (with Brian Schaffner)

2012
“Asking About Numbers: How and Why” *Political Analysis* (with Erik
Snowberg and Marc Meredith). doi:10.1093/pan/mps031

2012
“Movers, Stayers, and Registration” *Quarterly Journal of Political Science* (with Eitan Hersh and Ken Shepsle)

2012
“Validation: What Big Data Reveals About Survey Misreporting and the Real Electorate” *Political Analysis* (with Eitan Hersh)

2012

2012
“The American Public’s Energy Choice” *Daedalus* (with David Konisky)

2012
“Challenges for Technology Change” *Daedalus* (with Robert Fri)

2011
“When Parties Are Not Teams: Party positions in single-member district and proportional representation systems” *Economic Theory* 49 (March) DOI: 10.1007/s00199-011-0610-1

2011
“Profiling Originalism” *Columbia Law Review* (with Jamal Greene and Nathaniel Persily)

2010
“Partisanship, Public Opinion, and Redistricting” *Election Law Journal* (with Joshua Fougere and Nathaniel Persily)

2010
“Primary Elections and Party Polarization” *Quarterly Journal of Political Science* (with Shigeo Hirano, James Snyder, and Mark Hansen)

2010
“Constituents’ Responses to Congressional Roll Call Voting,” *American Journal of Political Science* (with Phil Jones)

2010

2010
“Residential Mobility and the Cell Only Population,” *Public Opinion Quarterly* (with Brian Schaffner)

2009
“Explaining Attitudes Toward Power Plant Location,” *Public Opinion Quarterly* (with David Konisky)

2009

2007 “Incumbency Advantages in U. S. Primary Elections,” (with John Mark Hansen, Shigeo Hirano, and James M. Snyder, Jr.) Electoral Studies (September)

2007 “Television and the Incumbency Advantage” (with Erik C. Snowberg and James M. Snyder, Jr.). Legislative Studies Quarterly.

2006 “The Political Orientation of Newspaper Endorsements” (with Rebecca Lessem and James M. Snyder, Jr.). Quarterly Journal of Political Science vol. 1, issue 3.

2006 “Purple America” (with Jonathan Rodden and James M. Snyder, Jr.) Journal of Economic Perspectives (Winter).

2005 “Statistical Bias in Newspaper Reporting: The Case of Campaign Finance” Public Opinion Quarterly (with James M. Snyder, Jr., and Erik Snowberg).

Michael Alvarez).

2005 “Legislative Bargaining under Weighted Voting” *American Economic Review* (with James M. Snyder, Jr., and Michael Ting)

2004 “Residual Votes Attributable to Voting Technologies” (with Charles Stewart) *Journal of Politics*

2004 “Using Term Limits to Estimate Incumbency Advantages When Office Holders Retire Strategically” (with James M. Snyder, Jr.). *Legislative Studies Quarterly* vol. 29, November 2004, pages 487-516.

2002 “Are PAC Contributions and Lobbying Linked?” (with James M. Snyder, Jr. and Micky Tripathi) *Business and Politics* 4, no. 2.

2001 “Voting Machines, Race, and Equal Protection.” *Election Law Journal*, vol. 1, no. 1

2001 “Models, assumptions, and model checking in ecological regressions” (with

2001

2001

2001

2000

2000

2000

1999
“Replicating Experiments Using Surveys and Aggregate Data: The Case of Negative Advertising.” (with Shanto Iyengar and Adam Simon) *American Political Science Review* 93 (December).

1999

1999

1997
“Incumbency Advantage and the Persistence of Legislative Majorities,” (with Alan Gerber), *Legislative Studies Quarterly* 22 (May 1997).

1996

1994

1994
“Horseshoes and Horseraces: Experimental Evidence of the Effects of Polls on Campaigns,” (with Shanto Iyengar) *Political Communications* 11/4 (October-
December): 413-429.

Special Reports and Policy Studies

2006 *The Future of Coal*. MIT Press. Continued reliance on coal as a primary power source will lead to very high concentrations of carbon dioxide in the atmosphere, resulting in global warming. This cross-disciplinary study – drawing on faculty from Physics, Economics, Chemistry, Nuclear Engineering, and Political Science – develop a road map for technology research and development policy in order to address the challenges of carbon emissions from expanding use of coal for electricity and heating throughout the world.

2003 *The Future of Nuclear Power*. MIT Press. This cross-disciplinary study – drawing on faculty from Physics, Economics, Chemistry, Nuclear Engineering, and Political Science – examines the what contribution nuclear power can make to meet growing electricity demand, especially in a world with increasing carbon dioxide emissions from fossil fuel power plants.
2002 “Election Day Registration.” A report prepared for DEMOS. This report analyzes the possible effects of Proposition 52 in California based on the experiences of 6 states with election day registration.

2001 *Voting: What Is, What Could Be.* A report of the Caltech/MIT Voting Technology Project. This report examines the voting system, especially technologies for casting and counting votes, registration systems, and polling place operations, in the United States. It was widely used by state and national governments in formulating election reforms following the 2000 election.

2001 “An Assessment of the Reliability of Voting Technologies.” A report of the Caltech/MIT Voting Technology Project. This report provided the first nationwide assessment of voting equipment performance in the United States. It was prepared for the Governor’s Select Task Force on Election Reform in Florida.

Chapters in Edited Volumes

Working Papers

2009 “Sociotropic Voting and the Media” (with Marc Meredith and Erik Snowberg), American National Election Study Pilot Study Reports, John Aldrich editor.

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>“Why did a majority of Californians vote to lower their own power?”</td>
<td>James Snyder and Jonathan Woon.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paper presented at the annual meeting of the American Political Science Association, Atlanta, GA, September, 1999. Paper received the award for the best paper on Representation at the 1999 Annual Meeting of the APSA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>“Has Television Increased the Cost of Campaigns?”</td>
<td>Alan Gerber and James Snyder.</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>“Messages Forgotten”</td>
<td>Shanto Iyengar.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>presented at the Annual Meeting of the American Political Science Association, September.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presented at the annual meeting of the Political Methodology Group, Cambridge, Massachusetts, July.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presented at the Annual Meeting of the American Political Science Association, Washington, DC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presented at the Annual Meeting of the American Association for Public Opinion Research, Phoenix.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presented at the Annual Meeting of the Western Political Science Association, Seattle, March.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>“Winning is Easy, But It Sure Ain’t Cheap.” Working Paper #90-4, Center for the American Politics and Public Policy, UCLA. Presented at the Political Science</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Departments at Rochester University and the University of Chicago.

Research Grants

2006-2008 National Science Foundation, “Primary Election Data Project”

2010-2011 National Science Foundation, “Cooperative Congressional Election Study,” $360,000

2012-2014 National Science Foundation, “Cooperative Congressional Election Study, 2010-2012 Panel Study” $425,000

2012-2014 National Science Foundation, “2012 Cooperative Congressional Election Study,” $475,000

Professional Boards

Editor, Cambridge University Press Book Series, Political Economy of Institutions and Decisions, 2006-present

Member, Board of the Reuters International School of Journalism, Oxford University, 2007 to present.

Member, Academic Advisory Board, Electoral Integrity Project, 2012 to present.

Contributing Editor, Boston Review, The State of the Nation.

Member, Board of Overseers, American National Election Studies, 1999 - 2013.

Associate Editor, Public Opinion Quarterly, 2012 to 2013.

Editorial Board of American Journal of Political Science, 2005 to present.
Editorial Board of Legislative Studies Quarterly, 2005 to present.
Editorial Board of Public Opinion Quarterly, 2006 to present.
Editorial Board of the Election Law Journal, 2002 to present.
Editorial Board of Business and Politics, 2002 to Present.
Scientific Advisory Board, Polimetrix, 2004 to 2006.
Special Projects and Task Forces

Principal Investigator, Cooperative Congressional Election Study, 2005 – present.

CBS News Election Decision Desk, 2006-present

Co-Organizer, MIT Seminar for Senior Congressional and Executive Staff, 1996-2007.

MIT Energy Initiative, Steering Council, 2007-2008
Harvard University Center on the Environment, Council, 2009-present