Report of

David C. Kimball, Ph.D.

1. My name is David Kimball and I am a resident of Webster Groves, Missouri. I am an associate professor of Political Science at the University of Missouri-St. Louis. I have been employed at UM-St. Louis since 2001. Before that I taught political science at Southern Illinois University at Carbondale from 1998 to 2001. I have taught undergraduate courses on Political Parties and Elections, Interest Group Politics, Politics and the Media, and Political Analysis. I have taught graduate seminars on American Politics, Voting Behavior, and research methods.

2. My educational background includes a dual degree (B.A) from Brown University in Political Science and Applied Mathematics (1989) and a Master’s degree in Political Science from Ohio State University in 1995. I earned a Ph.D. in Political Science in 1997 from Ohio State University, specializing in American politics and research methods. I am a member of the following professional associations: American Political Science Association, American Association for Public Opinion Research, Society for Political Methodology, Midwest Political Science Association, and the Southern Political Science Association. A copy of my curriculum vitae is attached as Appendix A to this report.

3. I have extensively researched election administration and the accuracy of different types of voting equipment. The results of my research have been published in *Public Opinion Quarterly, Election Law Journal, Review of Policy Research,* and *Spectrum: The Journal of State Government.* Three of the articles are co-authored with Martha Kropf, an assistant professor of political science at the University of North Carolina at Charlotte. In addition, three of my book chapters on voting technology are in books published by the
University Press of Florida, Lexington Books, and CQ Press. I have also presented thirteen conference papers examining voting equipment and election reform at various meetings, including the American Political Science Association, the American Association for Public Opinion Research, the Midwest Political Science Association and the Southern Political Science Association.

4. I have testified as an expert witness in one prior voting rights case, Working Families Party et al. vs. New York City Board of Elections et al. (E.D. NY 2003). The case involved whether or not to disable a sensor latch on lever voting machines in New York City.

5. Attorneys for the plaintiffs have asked me to analyze the extent to which central-count optical scan systems have resulted in residual votes, including overvotes and undervotes, in presidential and gubernatorial elections. The term “residual votes” refers to the difference between the number of people who turn out to vote and the number of valid votes cast in a particular contest. Residual votes can be further categorized as undervotes (where voters intentionally or unintentionally record no selection) or overvotes (where voters select too many candidates, thus spoiling the ballot). This includes the effect of technology on different demographic groups.

6. I am being compensated at a rate of $100 an hour for my work in this case.

7. I gathered election returns, voting technology data and demographic data for American counties for the 2000 and 2004 presidential elections and 2002 gubernatorial elections. Elections are administered at the county level in all but six states.

8. In states where elections are administered by municipalities or townships, I aggregate the vote totals and voting technology data to the county level. In four states
(Illinois, Missouri, Maryland, and Virginia), some cities have separate election administration authorities. These cities are treated as separate jurisdictions in this dataset. I treat Alaska as one observation since elections are administered by the Alaska state government. Adding the District of Columbia as another observation produces a total of 3,123 geographic units that cover the entire country for which we have voting equipment and demographic data. Some states and counties do not collect data on the total number of ballots cast in elections, despite efforts of Dr. Kropf, several graduate students, and me to contact counties and states for the needed data. Thus, while the data reflect the vast majority of counties in the United States, we are missing data on residual votes for a small number of counties.

9. One important feature of voting equipment involves error detection and prevention. Electronic voting machines (DREs) prevent voters from selecting more than one candidate in a contest and thus prevent any overvotes. In addition, some DRE systems remind voters about contests they may have skipped in a ballot review screen, and thus may reduce undervotes. Similarly, in precinct-count optical scan systems, the scanner is programmed to notify voters if the ballot contains overvotes. Precinct-count optical scan systems and DREs tend to reduce residual votes because of the error-prevention features in these systems. In contrast, punch card ballots and optical scan ballots counted at a central location do not offer such an error prevention feature and tend to produce higher rates of residual votes, especially overvotes.¹ Older DREs adopted prior to 2000 use a full-face layout (with all contests visible on the computer screen at once) that tends to mimic the layout on lever machines. Newer DREs adopted after 2000

use a scrolling layout with one or just a few contests displayed on the computer screen at once. Where possible I try to distinguish between these two types of DREs.

10. A summary of the residual vote data are shown below in Table 1. The results indicate that while newer voting methods such as optical scan and electronic machines (DREs) produce fewer residual votes than punch card ballots, systems with an error prevention feature (as in precinct-count optical scan systems and DREs) have a lower rate of residual votes than central-count optical scan systems.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Residual Vote Rate in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punch Card – Votomatic</td>
<td>Punch card is inserted behind booklet with ballot choices – voter uses stylus to punch out holes in card. Ballots counted by card reader machine.</td>
<td>2.8% 3.5% 1.8%</td>
</tr>
<tr>
<td>Lever Machine</td>
<td>Candidates listed by levers on a machine – voter pulls down the lever next to chosen candidate. Machine records and counts votes.</td>
<td>1.7% 2.2% 1.0%</td>
</tr>
<tr>
<td>Paper Ballot</td>
<td>Candidates are listed on a sheet of paper – voter marks box next to chosen candidate. Ballots counted by hand.</td>
<td>1.8% 2.3% 1.7%</td>
</tr>
<tr>
<td>Scrolling DRE</td>
<td>Candidates listed on a scrolling computer screen – voter touches screen next to chosen candidate. Machine records and counts votes.</td>
<td>1.2% 1.0%</td>
</tr>
<tr>
<td>Optical Scan – Central Count</td>
<td>Voter darkens an oval or arrow next to chosen candidate on paper ballot. Ballots counted by computer scanner at a central location.</td>
<td>1.8% 2.0% 1.7%</td>
</tr>
<tr>
<td>Optical Scan – Precinct Count</td>
<td>Voter darkens an oval or arrow next to chosen candidate on paper ballot. Ballots scanned at the precinct, allowing voter to find and fix errors.</td>
<td>0.9% 1.3% 0.7%</td>
</tr>
</tbody>
</table>

| Nationwide Residual Vote Rate | 1.8% 2.0% 1.1% |

Residual vote rates were calculated as the percentage of ballots cast that failed to record a valid vote for president (in 2000 and 2004) or governor (in 2002). 2873 counties were analyzed in 2000, 1847 counties analyzed in 2002, and 3036 counties analyzed in 2004.
There are several potential explanations for the higher rates of unrecorded votes observed in some counties. For example, studies indicate that unrecorded votes are more common in communities with large concentrations of people who are non-white, elderly, poor, or lack a high school degree. It is possible that counties using central-count optical scan systems are above the national average in these demographic characteristics. In addition, residual votes may tend to be higher in some counties than in others because of other election administration practices or different local political cultures. Thus, further analysis is needed to sort out competing explanations for residual votes.

One way to control for alternative explanations of residual votes is to examine the change in residual vote rates from 2000 to 2004 within the same counties. Some counties used the same voting equipment in both elections while other counties switched to new voting systems between 2000 and 2004. Demographic characteristics tend to remain stable between 2000 and 2004. The results in Table 2 indicate that residual vote rates dropped from 1.8% in 2000 to 1.1% in 2004, a reduction of 0.7%. Part of that reduction was the result of new voting technology. The residual vote rate dropped more than 1% in counties that switched from central-count optical scan to precinct-count optical scan or scrolling DREs. By comparison, in counties that used central-count optical scan systems in both elections, the residual vote rate only dropped 0.2%. Residual vote rates dropped by 2% in counties that switched from punch card ballots to precinct-count optical scan or scrolling DREs before the 2004 election. By comparison, the residual vote rate only dropped 0.9% in counties that switched from punch card ballots to central-count optical scan systems. Judging by the change in residual vote rates from the 2000 presidential
election to the 2004 presidential election, central-count optical scan systems do not perform as well as DREs or precinct-count optical scan systems. If Cuyahoga County switches from DREs to a central-count optical scan system, then I expect residual votes to increase in the jurisdiction.

13. Since the 2000 presidential election, many states and counties have switched from voting systems lacking an error prevention mechanism (punch cards, central-count optical scan, or hand-counted paper ballots) to systems with an error prevention feature (DREs or precinct-count optical scan). Most Ohio counties switched to new voting equipment after the 2004 presidential election. Mahoning County is the only county in Ohio to switch from a central-count optical scan system in 2000 to a DRE system in 2004. The residual vote rate for the presidential election dropped in Mahoning County from 2.4% in 2000 to 1.0% in 2004. Since 2000, no county in the United States has switched from a DRE system to a central-count optical scan system.
Table 2
Changes in Residual Votes for President from 2000 to 2004 by Voting Technology

<table>
<thead>
<tr>
<th>Equipment used in 2000</th>
<th>Equipment used in 2004</th>
<th>Residual Vote Rate in 2000</th>
<th>Residual Vote Rate in 2004</th>
<th>Change in Residual Vote Rate</th>
<th>Counties (# voters in 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central-count optical scan</td>
<td>Precinct-count optical scan</td>
<td>2.1%</td>
<td>0.7%</td>
<td>-1.4%</td>
<td>86 (1.7 million)</td>
</tr>
<tr>
<td>Central-count optical scan</td>
<td>Scrolling DRE</td>
<td>1.9%</td>
<td>0.7%</td>
<td>-1.2%</td>
<td>74 (3.2 million)</td>
</tr>
<tr>
<td>Central-count optical scan</td>
<td>Central-count optical scan</td>
<td>1.8%</td>
<td>1.6%</td>
<td>-0.2%</td>
<td>703 (12.0 million)</td>
</tr>
<tr>
<td>Votomatic punch card</td>
<td>Precinct-count optical scan</td>
<td>2.6%</td>
<td>0.6%</td>
<td>-2.0%</td>
<td>100 (5.8 million)</td>
</tr>
<tr>
<td>Votomatic punch card</td>
<td>Scrolling DRE</td>
<td>2.9%</td>
<td>0.9%</td>
<td>-2.0%</td>
<td>68 (9.5 million)</td>
</tr>
<tr>
<td>Votomatic punch card</td>
<td>Central-count optical scan</td>
<td>2.6%</td>
<td>1.7%</td>
<td>-0.9%</td>
<td>19 (4.0 million)</td>
</tr>
<tr>
<td>Same equipment in both elections</td>
<td>1.6%</td>
<td>1.2%</td>
<td>-0.4%</td>
<td>2,172 (79.5 million)</td>
<td></td>
</tr>
<tr>
<td>All counties</td>
<td>All counties</td>
<td>1.8%</td>
<td>1.1%</td>
<td>-0.7%</td>
<td>2,815 (116.2 million)</td>
</tr>
</tbody>
</table>

14. It is possible that the changes in residual votes observed in Table 2 are due to increased voter interest in the 2004 election or other local election administration practices, rather than changes in voting technology. Multiple regression analysis is a statistical method used to evaluate competing explanations about the factors that account for variation in a key variable (in this case the rate of residual votes). Regression analysis allows us to determine whether residual vote rates are still significantly higher in counties using central-count optical scan balloting systems than in counties using DREs or precinct-count optical scan, after controlling for the impact of other factors.

15. I estimate a fixed effects regression equation, with data included from the 2000
and 2004 elections. The dependent variable is the residual vote rate in a particular county in a particular year. Dummy variables are used to capture the impact of switching to new voting systems between 2000 and 2004. Other county characteristics (including demographic features, political culture, and election administration practices) are captured by a dummy variable for each county (the fixed effects portion of the analysis). The natural log of voter turnout is included as a control variable to estimate whether increasing turnout is associated with higher residual vote rates within a jurisdiction. Finally, a dummy variable for the 2004 election is included to assess whether the decline in residual votes occurred nationwide as a result of greater voter interest in the 2004 election.

16. The results in Table 3 reinforce the summary results seen in Table 2. The first model lumps all counties that changed voting equipment together. The results for the first model indicate that any county that changed its voting equipment between 2000 and 2004 produced an average reduction in the residual vote rate of 0.81%. The second model distinguishes between different voting systems and indicates that the different voting systems have different impacts on residual votes. Changing from punch cards to touch-screen DREs produced an average reduction in the residual vote rate of 1.17% in 2004, while changing from punch cards to precinct-count optical scan produced an average reduction in the residual vote rate of 1.44%. In contrast, changing from punch cards to central-count optical scan only produced an average reduction in the residual vote rate of 0.41%, an effect that is statistically weaker than the impact of touch-screen DREs and precinct-count optical scan (p<.01). In addition, changing from central-count optical scan

2 A similar approach is used in Charles Stewart III, “Residual Vote in the 2004 Election,” Election Law Journal (2006) 5:
to touch-screen DREs or precinct-count optical scan reduced residual votes too, with average reductions of 0.92% and 1.00% respectively. These results indicate that central-count optical scan systems produce higher residual vote rates in presidential contests than touch-screen DREs or precinct-count optical scan systems. They suggest that an average county switching from DREs to a central-count optical scan system (as proposed for Cuyahoga County) can expect residual votes to increase 0.92%.
Table 3
The Impact of Voting Equipment Changes on Residual Vote Rate,
2000 and 2004 Presidential Elections
(Fixed Effects Regression)

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>Coefficient</td>
</tr>
<tr>
<td></td>
<td>(std. error)</td>
<td>(std. error)</td>
</tr>
<tr>
<td>Election year is 2004</td>
<td>-.68** (.28)</td>
<td>-.69** (.28)</td>
</tr>
<tr>
<td>Any change in voting equipment</td>
<td>-.81*** (.21)</td>
<td></td>
</tr>
<tr>
<td>Change from punch cards to touch-screen DRE</td>
<td></td>
<td>-1.17** (.47)</td>
</tr>
<tr>
<td>Change from punch cards to precinct-count optical scan</td>
<td></td>
<td>-1.44*** (.47)</td>
</tr>
<tr>
<td>Change from punch cards to central-count optical scan</td>
<td></td>
<td>-.41* (.23)</td>
</tr>
<tr>
<td>Change from central-count optical scan to touch-screen DRE</td>
<td></td>
<td>-.92** (.37)</td>
</tr>
<tr>
<td>Change from central-count optical scan to precinct-count optical scan</td>
<td></td>
<td>-1.00*** (.35)</td>
</tr>
<tr>
<td>Change from lever machines to touch-screen DRE</td>
<td></td>
<td>-.37 (.41)</td>
</tr>
<tr>
<td>All other changes in voting equipment</td>
<td></td>
<td>-.04 (.32)</td>
</tr>
<tr>
<td>Number of Cases</td>
<td>5909</td>
<td>5909</td>
</tr>
<tr>
<td>Root MSE</td>
<td>1.12</td>
<td>1.11</td>
</tr>
<tr>
<td>R^2</td>
<td>.69</td>
<td>.71</td>
</tr>
</tbody>
</table>

The dependent variable is the residual vote rate (percent) in presidential elections (in 2000 and 2004). Coefficients for county dummy variables and natural log of turnout are not shown. Each county is weighted by the number of ballots cast in the election. Robust standard errors are shown in parentheses.

***$p < .01$, two-tailed test
**$p < .05$, two-tailed test
*p < .1$, two-tailed t test
I also examine the impact of voting technology across demographic groups. In general, residual votes tend to be more common in counties or precincts with larger concentrations of less-educated citizens, low-income residents, and racial and ethnic minorities. Table 4 shows residual vote rates in the 2000 presidential election in counties grouped by their racial or economic composition. Table 5 shows residual vote rates in the 2004 presidential election. Both tables indicate that systems without an error-prevention feature (punch card ballots and central-count optical scan ballots) produce a more dramatic increase in residual votes in counties with low median incomes and large percentages of African-American residents. By comparison, systems with an error-prevention feature (DRE voting machines and precinct-count optical scan ballots) do not yield such a dramatic increase in residual votes in counties with low median incomes or large African-American populations. This is consistent with other studies which find that confusing or poorly designed voting systems produce larger residual vote rates that fall disproportionately on low-income and minority communities. Furthermore, this indicates that if Cuyahoga County switches from DREs to a central-count optical scan system, residual votes will increase more than the average county since Cuyahoga is well above average in the percentage of African-American residents and below the national average.

in median household income. Previous studies suggest that switching from DREs to a voting system without an error-notification feature (such as central-count optical scan balloting) will disproportionately increase residual votes for African-American and low-income voters.

<table>
<thead>
<tr>
<th>Racial composition of county</th>
<th>Votomatic punch cards</th>
<th>Optical scan - central</th>
<th>Optical scan - precinct</th>
<th>Lever machines</th>
<th>DREs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 10% black</td>
<td>2.2%</td>
<td>1.3%</td>
<td>0.9%</td>
<td>1.1%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Between 10% and 30% black</td>
<td>3.1%</td>
<td>2.3%</td>
<td>0.7%</td>
<td>1.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Over 30% black</td>
<td>5.6%</td>
<td>5.2%</td>
<td>1.9%</td>
<td>2.3%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median Income</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than $25,000</td>
<td>4.5%</td>
<td>4.4%</td>
<td>1.1%</td>
<td>3.4%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Between $25,000 and $32,499</td>
<td>3.2%</td>
<td>2.1%</td>
<td>1.3%</td>
<td>2.0%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Between $32,500 and $40,000</td>
<td>3.0%</td>
<td>1.7%</td>
<td>1.0%</td>
<td>1.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Over $40,000</td>
<td>2.2%</td>
<td>1.0%</td>
<td>0.8%</td>
<td>1.1%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>
Table 5
Racial and Economic Disparity in Residual Votes by Voting Technology
2004 Presidential Election

<table>
<thead>
<tr>
<th>Racial composition of county</th>
<th>Votomatic punch cards</th>
<th>Optical scan - central</th>
<th>Optical scan - precinct</th>
<th>Full-Face DRE</th>
<th>Scrolling DRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 10% black</td>
<td>1.8%</td>
<td>1.5%</td>
<td>0.8%</td>
<td>1.3%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Between 10% and 30% black</td>
<td>1.7%</td>
<td>1.7%</td>
<td>0.5%</td>
<td>1.2%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Over 30% black</td>
<td>2.4%</td>
<td>4.1%</td>
<td>0.9%</td>
<td>1.3%</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median Income</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than $25,000</td>
<td>4.0%</td>
<td>3.3%</td>
<td>1.4%</td>
<td>2.8%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Between $25,000 and $32,499</td>
<td>2.3%</td>
<td>1.7%</td>
<td>0.8%</td>
<td>1.4%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Between $32,500 and $40,000</td>
<td>2.0%</td>
<td>1.6%</td>
<td>0.7%</td>
<td>1.3%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Over $40,000</td>
<td>1.5%</td>
<td>1.2%</td>
<td>0.7%</td>
<td>0.9%</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

CONCLUSION

18. Voting equipment matters when it comes to residual votes. The results of the analysis above are consistent with the results of other recent studies that report higher residual vote rates in jurisdictions using voting systems that do not provide voters notice of errors, and a chance to correct their ballots to eliminate errors, as is the case with punch card ballots and central-count optical scan systems.4 If Cuyahoga County switches

from a DRE system to a central-count optical scan system, I expect residual votes to increase.

19. The use of voting equipment without an error-prevention feature also leads to greater racial and income differences in residual votes than systems which prevent or notify voters of errors (such as DREs and precinct-count optical scan balloting). As a result, I expect the racial and income differences in residual votes to increase in Cuyahoga County if the jurisdiction switched from DREs to a central-count optical scan voting system.

DECLARATION

I, David Kimball, declare under penalty of perjury that the information in the foregoing report, including the appendices thereto, is true and correct to the best of my knowledge, information, and belief. Executed this 28th day of January, 2008 in St. Louis, Missouri.

David C. Kimball
Department of Political Science
University of Missouri-St. Louis
One University Blvd.
St. Louis, MO 63121
(314) 516-6050
DAVID C. KIMBALL
Curriculum Vitae
January 25, 2008

Department of Political Science
University of Missouri-St. Louis
One University Blvd.
St. Louis, MO 63121
Phone: 314-516-6050
Email: dkimball@umsl.edu
Web: http://www.umsl.edu/~kimballd

Education

Ph.D., December 1997, Ohio State University (Political Science)
Dissertation: *The Divided Voter in American Politics*
M.A., May 1995, Ohio State University (Political Science)
B.A., May 1989, Brown University, magna cum laude (Political Science, Applied Mathematics)

Employment

Associate Professor, University of Missouri-St. Louis, 2004-present
Assistant Professor, University of Missouri-St. Louis, 2001-2004
Assistant Professor, Southern Illinois University at Carbondale, 1998-2001
Environmental Protection Specialist, U.S. Environmental Protection Agency, 1989-1992

Books

Refereed Articles

Book Chapters

Works in Progress

Frank R. Baumgartner, Jeffrey M. Berry, Marie Hojnacki, David C. Kimball, and Beth L. Leech. *Advocacy and Policy Change*. Under review at University of Chicago Press.

Other Publications

Commentary

Research And Teaching Interests

American Government: political parties, divided government, interest group lobbying, campaigns and elections, voting technology, public opinion, Congress

Political Methodology: research design, regression analysis, maximum likelihood estimation

Teaching Experience

Undergraduate:
Political Analysis (University of Missouri-St. Louis), Fall 2002, Fall 2004, Fall 2007
Political Parties and Elections (UMSL), Fall 2001, Fall 2002, Fall 2004, Fall 2006
Interest Group Politics (UMSL), Fall 2007
Introduction to Political Science Research Methods (SIU), Spring 2000, Fall 2000, Spring 2001
American Political Parties (Southern Illinois University), Fall 1999, Spring 2000
Political Campaigns and Elections (Southern Illinois University), Fall 1998, Fall 2000
Introduction to American Government (Southern Illinois University), Fall 1998, Spring 1999
Introduction to Political Behavior (Ohio State University), Summer 1995

Graduate:
Mass Political Behavior (UMSL), Winter 2007
Pro-Seminar in American Politics (UMSL), Fall 2003, Winter 2005, Fall 2006
Regression Analysis in Political Science (Southern Illinois University), Spring 2001
Seminar in Political Behavior (Southern Illinois University), Fall 1999
Pro-Seminar in American Politics (Southern Illinois University), Spring 1999
Techniques of Political Analysis (Ohio State University), Fall 1995, Winter 1996, Spring 1996

Awards & Grants

Small Grants Award, from the University of Missouri-St. Louis, Office of Research Administration ($430), March 2007.
Small Grants Award, from the University of Missouri-St. Louis, Office of Research Administration ($800), November 2005.
Grant from Public Policy Research Center, University of Missouri - St. Louis, for study of St. Louis polling places ($700), October, 2004-March 30, 2005.
Small Grants Award, from the University of Missouri-St. Louis, Office of Research Administration ($1,000), October 2004.
Emerging Scholar Award, from the Political Organizations and Parties section of the American Political Science Association, September 3, 2004.
Small Grants Award, from the University of Missouri-St. Louis, Office of Research Administration ($936), October 2003.
Public Policy Research Center Fellow, University of Missouri-St. Louis ($1000), July 1, 2003-June 30, 2004.
University of Missouri Research Board Grant, “Explaining Unrecorded Votes in Elections,” with Martha Kropf ($38,468), December 2002.
Small Grants Award, from the University of Missouri-St. Louis, Office of Research Administration ($942), November 2002.
Public Policy Research Center Fellow, University of Missouri-St. Louis ($2250), July 1, 2002-June 30, 2003.
Research Award, “Campaign Contributions and Washington Lobbying,” from the University of Missouri-St. Louis, Office of Research Administration ($7,630), February 2002
Small Grants Award, from the University of Missouri-St. Louis, Office of Research Administration ($917), October 2001.
National Science Foundation Research Grant, “Collaborative Research on Lobbying,” with Frank R. Baumgartner, Jeffrey M. Berry, Marie Hojnacki, and Beth L. Leech, SBR-9905195 ($80,569), June 1999 – August 2001.

David C. Kimball - 5
Dean’s Appreciation Award, College of Liberal Arts, SIUC ($500), January 2000.
Henry R. Spencer Award for the outstanding dissertation defended in political science at Ohio State University during the 1997-98 academic year
Francis R. Aumann Award (given annually by the Ohio State University Political Science department for the best conference paper written by a graduate student) with Barry Burden, 1997
Jacobina Aman Award (given annually by the Ohio State University Political Science department for the best seminar paper written by a graduate student), 1996
Invited Participant, Political Methodology Section summer meetings, 1995, 1997 and 1998
Multiple Year University Fellowship, Ohio State University, 1992-93 and 1996-97
Phi Beta Kappa, Brown University, 1989
Sigma Xi, Brown University, 1989

Conference Presentations

“Assesessing Election Reform Four Years After Florida” (with Martha Kropf). 2005. Southern Political Science Association, Atlanta.
American Political Science Association, Washington.
"Linking Representation and House Member Behavior to Constituents' Voting Behavior" (with Janet Box-Steffensmeier and Katherine Tate). 1997. American Political Science Association, Washington, DC.
"A New Approach to the Study of Ticket-Splitting" (with Barry Burden). 1997. 14th Annual Political Methodology Conference, Columbus, OH.
"Socialization to Congressional Roles" (with Janet M. Box-Steffensmeier and Anthony Mughan). 1996. Workshop of Parliamentary Scholars and Parliamentarians, Oxfordshire, U.K.
"Linking Representation and Campaigns to Voting Behavior" (with Janet Box-Steffensmeier and Katherine Tate). 1996. NES Congressional Research and Development Conference on Congressional Elections, Chicago.
"Living Up to Expectations: Public Attitudes Toward Congress" (with Samuel C. Patterson). 1995.

David C. Kimball - 7
American Political Science Association, Chicago.

Professional Activities and University Service

1999 Political Methodology Poster Award Committee

Section head for parties and interest group panels, 2004 SWPSA conference

UMSL University Libraries Committee, 2005-2006

Departmental Committees:
- Undergraduate Committee, UMSL Department of Political Science, 2001-2005
- Graduate Committee, UMSL Department of Political Science, 2004, 2005-present
- Esayan Committee, UMSL Department of Political Science, 2002-present
- Faculty Advisor, Gamma Iota chapter of Pi Sigma Alpha, SIUC 1999-2001
- Faculty Advisor, SIUC College Democrats, 2000-2001
- Graduate Studies Committee, SIUC Department of Political Science, 1998-1999
- Undergraduate Studies Committee, SIUC Department of Political Science, 1999-2001
- Executive Committee, SIUC Department of Political Science, 2000-2001

Served on 8 dissertation committees and 7 master’s committees.

Staff Member, Summer Institute in Political Psychology, Ohio State University, 1997

Professional consulting:

- Member of the Citizen Audit Panel for the St. Louis City Board of Election Commissioners, 2006.

- Consultant for RegionWise in 2004. Helped produce the *One Vote* issue statement to inform voters of their rights and responsibilities, as well as new election procedures in 2004.

- Consultant for the Missouri Legislative Academy (a program to inform members of the Missouri state legislature about public policy issues), in 2002. Martha Kropf and I wrote a policy brief (“Federal Election Reform Bill Will Require Action by Missouri”) about the requirements for Missouri in a recently passed federal election reform law.